\(\pi-Cipher\ v2.0^{1,2}\)

Designers: Danilo Gligoroski3 and Hristina Mihajloska3 and Simona Samardjiska4 and Håkon Jacobson3 and Mohamed El-Hadedy5 and Rune Erlend Jensen6 and Daniel Otte7

Submitter: Hristina Mihajloska

hristina.mihajloska@finki.ukim.mk

12.10.2015

\footnote{Since, the name of the cipher contains the Greek letter \(\pi\), in the software implementations we will use the name PiCipher. More precisely in this document we propose the following four variants of the cipher: Pi16Cipher096v2, Pi32Cipher128v2, Pi64Cipher128v2, Pi64Cipher256v2}

\footnote{This is a compilation of the documentation performed on 12.10.2015. The cipher is not changed, and the submitted Reference C code on 15.09.2015 corresponds to the textual description of the cipher. However, this compilation corrects the mistakes in the pseudo-code given in the initial submission.}

\footnote{ITEM, Norwegian University of Science and Technology, Trondheim, Norway}

\footnote{FCSE, ”Ss Cyril and Methodius” University, Skopje, Republic of Macedonia}

\footnote{Department of Computer Science, University of Virginia, Charlottesville, Virginia}

\footnote{IDI, Norwegian University of Science and Technology, Trondheim, Norway}

\footnote{Ruhr Universität Bochum, Germany}
Changes

Changes in the cipher

π-Cipher v2.0 has one essential tweak and one reduction of the number of rounds in comparison with π-Cipher v1.0.

1. Padding Rule (essential tweak). In π-Cipher v1.0, the padding rule for the last block of the AD is the following:

\[
AD_a \left\{ \begin{array}{ll}
AD_a & \text{if } |AD_a| = \text{bitrate}, \\
AD_a||10^* & \text{if } |AD_a| < \text{bitrate},
\end{array} \right.
\]

and for the last block of the message \(M \) is the following:

\[
M_m \left\{ \begin{array}{ll}
M_m & \text{if } |M_m| = \text{bitrate}, \\
M_m||10^* & \text{if } |M_m| < \text{bitrate},
\end{array} \right.
\]

where 1 represents the byte 0x01, and 0 represents the byte 0x00.

We modify the padding rule as following: ”Append 1 in any case, and fill the rest of the block with 0s”. Thus, the changes will be:

The padding rule for the associated data AD is the following:

\[\text{Pad}(AD) = AD_1||AD_2||\ldots||AD_a||10^*\]

and for the message \(M \) is the following:

\[\text{Pad}(M) = M_1||M_2||\ldots||M_m||10^*\]
where 1 represents the byte 0x01, and 0 represents the byte 0x00.

Note that if the associated data AD (the message M) has length that is a multiple of the rate, then the number of processed blocks of AD (M) is increased by one, and thus $a \leftarrow a + 1$ ($m \leftarrow m + 1$).

2. **Reduction of the number of rounds.** We decided to reduce the number of rounds from 4 to 3.

Changes in explanation

We made some improvements in the documentation of the π-Cipher v1.0. This is the list of changes:

1. We reduce the number of variants of the cipher. Instead of the six variants in v1.0, now we have just four: π_{16}-Cipher096, π_{32}-Cipher128, π_{64}-Cipher128 and π_{64}-Cipher256.

2. We add an algorithmic description of the encryption/authentication and decryption/verification procedures in Section 1.2.

3. In Section 3.1 we give clarification about the feature Tag second preimage resistance - resistance against finding second preimage for an authentication tag when the key is known (insider attack) for short messages.

4. From v2.0 π-Cipher supports the concept of ”open authorship” and that is explained in the two new paragraphs of the Chapter 6.

5. We add new parts in the documentation of π-Cipher, as follows:
 - Section 4.2.1: The security proof of π-Cipher.
 - Section 4.2.2: Explanation of how to use tweakable parameter N for wide blocks.
 - Section 4.2.3: Explanation of how to securely use incremental property of π-Cipher.
 - Section 4.2.4: Rational why we consider π-Cipher to be STREAM OAE2+ design.
Table of Contents

1 Specification ... 6
 1.1 Parameters, variables and constants 6
 1.2 General design properties 9
 1.2.1 Authenticated encryption 10
 1.2.2 Decryption and verification 17
 1.3 The π-function 17

2 Security goals ... 30

3 Security analysis ... 32
 3.1 Security proof of π-Cipher 32
 3.1.1 Privacy of π-Cipher 33
 3.1.2 Authenticity of π-Cipher 38
 3.2 Bit diffusion analysis 41
 3.3 Distinguisher for one round of π16-Cipher096 43

4 Features .. 46
 4.1 Main Features ... 46
 4.2 Extra Features .. 49
 4.2.1 Tag second preimage resistance - resistance against finding second preimage for an
 4.2.2 A wide block tweakable feature of π-Cipher 49
 4.2.3 How to securely do incremental encryption (even with nonce misuse) 51
 4.2.4 π-Cipher is STREAM OAE2* 53

5 Design rationale .. 55
 5.1 Why parallelism, incrementality and tag second-preimage resistance? 55
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2 Why constants in (\pi)-Cipher and how to choose them</td>
<td>56</td>
</tr>
<tr>
<td>6 Intellectual property</td>
<td>58</td>
</tr>
<tr>
<td>7 Consent</td>
<td>59</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>60</td>
</tr>
<tr>
<td>References</td>
<td>61</td>
</tr>
</tbody>
</table>
Chapter 1

Specification

1.1 Parameters, variables and constants

The following parameters and variables are used in the specification of π-Cipher:

- $\pi\omega$-Cipher: AEAD cipher defined with ω-bit words and n-bit security.
- $\omega = 16, 32, 64$: Size of binary words in bits that are used in π-Cipher.
- π function: Main permutation function of the cipher.
- M: Message or plaintext. Thus, $M = M_1||M_2||\ldots||M_m$.
- $m\text{len}$: Length of a message less than $2^{64} - 1$ bytes.
- m: Number of message blocks.
- K: Secret key.
- $k\text{len}$: Length of a key K in bytes. It can be 12 bytes (96 bits), 16 bytes (128 bits) or 32 bytes (256 bits).
- AD: Associated data. This data can not be encrypted or decrypted.
- $ad\text{len}$: Length of an associated data less than $2^{64} - 1$ bytes.
1.1 Parameters, variables and constants

\(a \)
Number of associated data blocks. Thus, \(AD = AD_1 || AD_2 || \ldots || AD_a \).

\(IS \)
Internal state, bijectively transformed by the \(\pi \) function. Throughout this document when \(IS \) is used as a common internal state for many parallel computations, we will use the abbreviation \(CIS \) (Common Internal State).

\(I_i \)
Chunk from the internal state \(IS \). It is a 4-tuple of \(\omega \)-bit words. \(I_i = (I_{i1}, I_{i2}, I_{i3}, I_{i4}) \).

\(N \)
The internal state \(IS \) is divided into \(N \) chunks of length \(4 \times \omega \). \(N \) is an even number and \(N \geq 4 \). Thus, \(IS = (I_1, I_2, \ldots, I_N) \).

\(b \)
Size of \(IS \) in bits. It is constrained by the following relation: \(b = N \times 4 \times \omega \).

\(rate \)
Rate of the \(IS \) from the sponge construction paradigm point of view. \(IS_{rate} = I_1 || I_3 || \ldots || I_{N-1} \).

\(r \)
Size of \(IS_{rate} \) in bits.

\(capacity \)
Capacity of the \(IS \) from the sponge construction paradigm point of view. \(IS_{capacity} = I_2 || I_4 || \ldots || I_N \).

\(c \)
Size of \(IS_{capacity} \) in bits.

\(|||| \)
Operator of interleaved concatenation in order to correctly denote a concatenation of \(IS_{rate} \) and \(IS_{capacity} \) that restores \(IS \) i.e., \(IS = IS_{rate} |||| IS_{capacity} \).

\(PMN \)
Public message number. The size \(|PMN| \) in bits is constrained by the following relation: \(8 \times klen + |PMN| + 8 \leq b \).

\(SMN \)
Secret message number. The size \(|SMN| \) in bits is constrained by the following relations: \(|SMN| = 0 \) or \(|SMN| = r \).

\(NONCE \)
\(NONCE = (PMN, SMN) \).
1.1 Parameters, variables and constants

\(C \)

Ciphertext.

\(clen \)

Length of the ciphertext in bytes, where \(clen = mlen + |SMN| + tlen \) (here \(|SMN| \) is in bytes).

\(T \)

Authentication tag for the message, NONCE and associated data.

\(tlen \)

Length of the authentication tag in bytes. It is constrained by the following relation: \(tlen \leq \frac{5}{8} \).

\(R \)

Tweakable parameter that represents the number of rounds in \(\pi \) function.

\(ctr \)

64-bit counter used in the cipher. It is initialized from the first 64 bits of the IS\(_{\text{capacity}}\).

\(\oplus_d \)

Operation of componentwise addition of two \(d \)-dimensional vectors of \(\omega \)-bit words in \((\mathbb{Z}_2^\omega)^d\).

\(\pi \)-Cipher is designed for different word sizes and different security levels. The recommended variants are presented in Table 1.1

Table 1.1: Basic characteristics of all variants of the \(\pi \)-Cipher

<table>
<thead>
<tr>
<th>Variant</th>
<th>Word size (\omega) (in bits)</th>
<th>(klen) (in bits)</th>
<th>(PMN) (in bits)</th>
<th>(SMN) (in bits)</th>
<th>(b) (in bits)</th>
<th>(N)</th>
<th>(rate) (in bits)</th>
<th>Tag (T) (in bits)</th>
<th>(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi 16)-Cipher096</td>
<td>16</td>
<td>96</td>
<td>32</td>
<td>0 or 128</td>
<td>256</td>
<td>4</td>
<td>128</td>
<td>(\leq 128)</td>
<td>3</td>
</tr>
<tr>
<td>(\pi 32)-Cipher128</td>
<td>32</td>
<td>128</td>
<td>128</td>
<td>0 or 256</td>
<td>512</td>
<td>4</td>
<td>256</td>
<td>(\leq 256)</td>
<td>3</td>
</tr>
<tr>
<td>(\pi 64)-Cipher128</td>
<td>64</td>
<td>128</td>
<td>128</td>
<td>0 or 512</td>
<td>1024</td>
<td>4</td>
<td>512</td>
<td>(\leq 512)</td>
<td>3</td>
</tr>
<tr>
<td>(\pi 64)-Cipher256</td>
<td>64</td>
<td>256</td>
<td>128</td>
<td>0 or 512</td>
<td>1024</td>
<td>4</td>
<td>512</td>
<td>(\leq 512)</td>
<td>3</td>
</tr>
</tbody>
</table>
1.2 General design properties

π-Cipher is parallel, incremental, provably secure, nonce based authenticated encryption cipher with associated data that offers some level of tag second-preimage resistance. It involves several solid cryptographic concepts such as:

1. The design belongs to the category of Encrypt-then-MAC authenticated ciphers.

2. Its parallel and incremental design is similar to the design of the counter based XOR MAC scheme of [2], but in order to achieve the second-preimage resistance for the MAC tags, instead of XOR operations for the intermediate tag components we use componentwise additions in \((\mathbb{Z}_{2^\omega})^d\).

3. In [5, Sec. 3.3] the authors mention that it is possible to construct an authenticated encryption using two pass sponge construction [4] that is proven to be secure as long as the underlying sponge permutation has no structural distinguishers. In the same paper [5] the duplex sponge construction is introduced. Although these constructions have the property to be tag second-preimage resistant, neither of them is incremental. An incremental and parallel two pass scheme is proposed in [13]. However, the design goal for that scheme was not to be tag second-preimage resistant. Combining all these ideas, in our design we use a two pass counter based sponge component that we call triplex component. The used π permutation is based on ARX (Addition, Rotation and XOR) operations.

CAESAR (Competition for Authenticated Encryption: Security, Applicability, and Robustness) [3] has the term Robustness as one of its main goals. π-Cipher offers the following features that can be connected with the robustness:

- **Tag second-preimage resistance.** π-Cipher offers some level of tag second-preimage resistance. We say some level, since the computational efforts for finding a second-preimage for a given pair \((message, tag)\) are not the same as for finding second-preimages for hash functions (see Section 1.2.1).

- **An intermediate level of nonce-misuse resistance.** In this case the robustness is manifested when legitimate key holder uses the same key \(K\), the same associated data \(AD\), the same public message number \(PMN\) but different secret message numbers \(SMN_1\) and \(SMN_2\).
1.2 General design properties

- **Flexible block size.** The flexibility of block sizes allows secure authenticated encryption of data in rest (see Section 1.2.2) and secure incremental mode of operation (see Section 1.2.3).

1.2.1 Authenticated encryption

The encryption/authentication procedure of π-Cipher accepts key K with fixed-length of $klen$ bytes, message M with $mlen$ bytes and associated data AD with $adlen$ bytes. The cipher uses a fixed-length public message number PMN and secret message number SMN. The output of the encryption/authentication procedure is a ciphertext C with $clen$ bytes and a tag T with fixed-length of $tlen$ bytes. The length $clen$ of the ciphertext C is a sum of the byte length of the message, the authentication tag and the encrypted secret message number. The decryption/verification procedure accepts key K, associated data AD, ciphertext C, public message number PMN and tag T, and returns the decrypted pair (SMN, M) if the tag has been verified or \bot otherwise.

The main building element in the operations of encryption/authentication and decryption/verification is our new construction related to the duplex sponge, called triplex component. It uses the permutation function π twice, it injects a counter into the internal state and digests an input string. The triplex component always outputs a tag. Optionally after the first call of the permutation function it can output a string (that can be a ciphertext block or a message block). The general scheme of the triplex component is presented in Figure 1.1.

Because of the differences in the encryption/authentication and decryption/verification procedures, there are two different variants of the triplex component. We call them e-
1.2 General design properties

\[\pi \] function

(a) e-triplex

(b) d-triplex

Figure 1.2: Triplex component

Triplex (for the phase of encryption) and d-triplex (for the phase of decryption). The only difference in these two components is how the input string is treated after the first call of the permutation function. In the first one, the input string (plaintext) is XORed with the current internal state and the result proceeds to the second invocation of the permutation function \(\pi \). In the d-triplex component, the input string (ciphertext) is directly injected as a part of the internal state before the second invocation of the permutation function \(\pi \). The graphical representation of the e-triplex and d-triplex components is given in Figure 1.2.

The encryption/authentication operation of \(\pi \)-Cipher can be described in four phases:

1. **Initialization.** In this phase we append a single "1" (i.e., 0x01 in hexadecimal byte representation) and the smallest number of 0’s (i.e., 0x00 in hexadecimal byte representation) to the concatenated value of the key and the public message number. The length of the result should be less than or equal to the length of the internal state of the permutation function \(\pi \). In other words the internal state is initialized with \(K||PMN||10^* \), where \(|K||PMN||10^*| = b \). Then the internal state is updated by applying the permutation function \(\pi \). Because, \(\pi \)-Cipher works in parallel mode, it has an initial value for the state for all of the parallel parts. We call it **Common Internal State (CIS)**. The CIS is initialized as:

\[
CIS \leftarrow \pi(K||PMN||10^*).
\]

The next part of this phase is initializing the counter \(ctr \).
1.2 General design properties

Since \(CIS = CIS_{\text{rate}} ||| CIS_{\text{capacity}} \) we initialize the \(ctr \) as the first 64 bits (little endian representation) of the \(CIS_{\text{capacity}} \).

The graphical representation of the Initialization phase is given in Figure 1.3.

2. Processing the associated data.

The associated data \(AD = AD_1 ||| AD_2 ||| \ldots ||| AD_a \) is processed block by block in parallel using e–triplex components. The padding rule for the associated data \(AD \) is the following:

\[
Pad(AD) = AD_1 ||| AD_2 ||| \ldots ||| AD_a ||| 10^*
\]

where 1 represents the byte \(0x01 \), and 0 represents the byte \(0x00 \). Note that if the associated data \(AD \) has length that is a multiple of the \(rate \), then the number of processed blocks of \(AD \) is increased by one, and thus \(a \leftarrow a + 1 \).

To every block \(AD_i \) we associate a unique counter calculated as a sum of the initial counter \(ctr \) and the ordinal number of the processed block \(i \). The input to every e–triplex component is \(CIS, ctr + i \) and \(AD_i \), and the output is an intermediate tag \(t'_i \).

The tag \(T' \) for the associated data is computed as a component-wise addition \(\oplus_d \) of \(a \) vectors \(t'_i \in (\mathbb{Z}_{2^\omega})^d \) of dimension \(d \), where \(d \) is the number of \(\omega \)-bit words in the \(rate \) part. In other words,

\[
T' = \bigoplus_{i=1}^a t'_i = t'_1 \oplus_d t'_2 \oplus_d \ldots \oplus_d t'_a
\]

where \(t'_i = (t'_{i1}, t'_{i2}, \ldots, t'_{id}) \) is a \(d \)-dimensional vector of \(\omega \)-bit words. In the case where \(N = 4 \), the dimension of these vectors is 8 \((d = 8) \).

The final part of this phase is to update the value of the \textit{Common Internal State} \(CIS \). Updating the \(CIS \) is done by xoring it with the tag \(T' \) and applying the \(\pi \) permutation function i.e. by the following expression:

\[
CIS \leftarrow \pi(CIS_{rate} \oplus T' ||| CIS_{capacity})
\]

This step is described graphically in Figure 1.4.
3. **Processing the secret message number.** This phase is omitted if the length of the secret message number SMN is 0 (it is the empty string). If SMN is not the empty string, then the first step in this phase is a call to the e-triplex component. The input is the following triplet: $(CIS, ctr + a + 1, SMN)$, and the output is the following pair: (C_0, t_0). The second step of this phase is updating the CIS (for free) which becomes the value of the current internal state after the processing of SMN. Formally, the updating part can be described by the following two expressions:

$$IS \leftarrow \pi(IS_{rate} \oplus (ctr + a + 1) ||| IS_{capacity}),$$

$$CIS \leftarrow \pi(IS_{rate} \oplus SMN ||| IS_{capacity})$$

The tag produced from this phase is

$$T'' = T' || t_0.$$

This phase is described graphically in Figure 1.5.

4. **Processing the message.** The message $M = M_1||\ldots||M_j||\ldots||M_m$ is processed block by block in parallel by e–triplex components. The padding rule for the message M is the following:

$$Pad(M) = M_1||M_2||\ldots||M_m||10^a$$

where 1 represents the byte $0x01$, and 0 represents the byte $0x00$. Note that if the
Figure 1.4: Processing the associated data AD with a blocks in parallel
1.2 General design properties

message M has length that is a multiple of the rate, then the number of processed blocks of M is increased by one, and thus $m \leftarrow m + 1$.

To every block M_j we associate a unique block counter. It can be calculated as:

$$ctr \leftarrow \begin{cases}
ctr + a + j & \text{if } |SMN| = 0, \\
ctr + a + 1 + j & \text{if } |SMN| = r,
\end{cases}$$

where j is the ordinal number of the processed block in the message, and $0 < j \leq m$. The input to every e-triplex component is CIS, block ctr and M_j, and the output is a pair (C_j, t_j). By definition we put that the length of the final ciphertext block C_m is the same as the length of the un-padded last plaintext block M_m i.e., $|C_m| = |M_m|$.

The final tag T is obtained as a \oplus_d sum of all block tags t_j and the previously obtained tag T''.

$$T = T'' \oplus_d t_1 \oplus_d \ldots \oplus_d t_j \oplus_d \ldots \oplus_d t_m.$$

where $t_j = (t_{j1}, t_{j2}, \ldots, t_{jd})$ is a d-dimensional vector of ω-bit words. In this case where $N = 4$, the dimension $d = 8$.

This phase is described graphically in Figure 1.6.
1.2 General design properties

Figure 1.6: Processing the message M with m blocks in parallel
1.3 The π-function

The output of the encryption/authentication procedure is the ciphertext

$$C = C_0||C_1||\ldots||C_m||T.$$

The encryption/authentication part is defined in Algorithm 1.

1.2.2 Decryption and verification

The decryption/verification procedure is defined correspondingly. There are four phases and the only difference is in the last two (so the Initialization phase and Processing the associated data phase are completely the same as in the encryption/authentication procedure).

The decryption of SMN is performed in the phase of Processing the secret message number. Thus, instead of using an e-triplex component, we use a d-triplex component. The input parameters are: CIS, incremented counter $ctr + a + 1$ and the ciphertext block C_0. The output is a pair (SMN, t_0). The tag is processed in the same way as in the encryption/authentication procedure. In this phase decrypted value of C_0 belongs to SMN.

For the decryption of the rest of the ciphertext we continue to use a d-triplex component (instead of e-triplex). The output is now a decrypted message block and a tag value.

At the end, the supplied tag value T is compared to the one computed by the algorithm. Only if the tag is correct, the decrypted message is returned.

The decryption/verification part is defined in Algorithm 2.

1.3 The π-function

The core part of every sponge construction is the permutation function, and the whole security of the primitive relies on it. The design goal for our sponge construction was to obtain a strong permutation, which for different values of the parameter ω (the bit size of the words) provides different features, i.e. to be very efficient when $\omega = 64$ and lightweight when $\omega = 16$.

π-Cipher has ARX based permutation function which we denote as π function. It uses similar operations as the operations used in the hash function Edon-R [7] but instead
1.3 The π-function

Algorithm 1: Encryption $E_K(\text{PMN}, AD, SMN, M)$

1. Initialization: $K || PMN || 10^* \text{ where } |K||PMN||10^* = b$
2. $CIS \leftarrow \pi(K || PMN || 10^*)$
3. $ctr \leftarrow |CIS_{\text{capacity}}|^{64}$
4. $AD = AD_1 || AD_2 || \ldots || AD_{a-1} || AD_a$
5. $AD \leftarrow \text{Pad}(AD)$
6. $M = M_1 || M_2 || \ldots || M_{m-1} || M_m$, and $m_{\text{old}} \leftarrow m$, $\text{lastBlockLength} \leftarrow |M_m|$
7. $M \leftarrow \text{Pad}(M)$
8. for $i = 1 \text{ to } a$ do
 8.1 $IS \leftarrow \pi(CIS_{\text{rate}} \oplus (ctr + i) || |CIS_{\text{capacity}}|)$
 8.2 $IS \leftarrow \pi(IS_{\text{rate}} \oplus AD_i || |IS_{\text{capacity}}|)$
 8.3 $t'_i \leftarrow IS_{\text{rate}}$
 8.4 $T' \leftarrow T' \oplus d t'_i$
9. $ctr \leftarrow ctr + a$
10. $CIS \leftarrow \pi(CIS_{\text{rate}} \oplus T' || |CIS_{\text{capacity}}|)$
11. $IS \leftarrow \pi(CIS_{\text{rate}} \oplus (ctr + 1) || |CIS_{\text{capacity}}|)$
12. $C_0 \leftarrow IS_{\text{rate}} \oplus SMN$
13. $IS \leftarrow \pi(IS_{\text{rate}} \oplus SMN || |IS_{\text{capacity}}|)$
14. $t_0 \leftarrow IS_{\text{rate}}, T'' \leftarrow T'' \oplus d t_0, T \leftarrow T''$
15. $CIS \leftarrow IS$
16. $ctr \leftarrow ctr + 1$
17. for $i = 1 \text{ to } m$ do
 17.1 $IS \leftarrow \pi(CIS_{\text{rate}} \oplus (ctr + i) || |CIS_{\text{capacity}}|)$
 17.2 $C_i \leftarrow IS_{\text{rate}} \oplus M_i$
 17.3 $IS \leftarrow \pi(IS_{\text{rate}} \oplus M_i || |IS_{\text{capacity}}|)$
 17.4 $t_i \leftarrow IS_{\text{rate}}$
 17.5 $T \leftarrow T \oplus d t_i$
18. $C \leftarrow C_0 || C_1 || \ldots || C_{m_{\text{old}}} || T$, where $|C_{m_{\text{old}}}| = \text{lastBlockLength}$
19. return C

Algorithm for padding: $\text{Pad}(S)$

1. $S = S_1 || S_2 || \ldots || S_l$
2. if $|S_l| < r$ then
3. $S_l \leftarrow S_l || 10^*$, where $|S_l| = r$
4. else
5. $S_{l+1} \leftarrow 10^*$, where $|S_{l+1}| = r$, and $l \leftarrow l + 1$
6. return S
1.3 The \(\pi \)-function

Algorithm 2: Decryption \(D_K(PMN, AD, C, T) \)

1. **Initialization**: \(K||PMN||10^* \) where \(|K||PMN||10^*| = b \)
2. \(CIS \leftarrow \pi(K||PMN||10^*) \)
3. \(ctr \leftarrow |CIS_{capacity}|64 \)
4. \(AD = AD_1||AD_2||...||AD_{a-1}||AD_a \)
5. \(AD = Pad(AD) \)
6. \(C = C_0||C_1||...||C_m \), where \(|C_i| = r \) for \(0 \leq i < m \) and \(lastBlockLength \leftarrow |C_m| \)
7. **for** \(i = 1 \) **to** \(a \) **do**
 8.1. \(IS \leftarrow \pi(CIS_{rate} \oplus (ctr + i)|||CIS_{capacity}) \)
 8.2. \(IS \leftarrow \pi(IS_{rate} \oplus AD_i)|||IS_{capacity}) \)
 8.3. \(t'_i \leftarrow IS_{rate} \)
 8.4. \(T' \leftarrow T' \oplus_d t'_i \)
 9. \(ctr \leftarrow ctr + a \)
10. \(CIS \leftarrow \pi(CIS_{rate} \oplus T'|||CIS_{capacity}) \)
11. \(IS \leftarrow \pi(CIS_{rate} \oplus (ctr + 1)|||CIS_{capacity}) \)
12. \(SMN \leftarrow IS_{rate} \oplus C_0 \)
13. \(IS \leftarrow \pi(C_0)|||IS_{capacity}) \)
14. \(t_0 \leftarrow IS_{rate}, T'' \leftarrow T'' \oplus_d t_0, T \leftarrow T'' \)
15. \(CIS \leftarrow IS \)
16. \(ctr \leftarrow ctr + 1 \)
17. **for** \(i = 1 \) **to** \(m - 1 \) **do**
 17.1. \(IS \leftarrow \pi(CIS_{rate} \oplus (ctr + i)|||CIS_{capacity}) \)
 17.2. \(M_i \leftarrow IS_{rate} \oplus C_i \)
 17.3. \(IS \leftarrow \pi(C_i)|||IS_{capacity}) \)
 17.4. \(t_i \leftarrow IS_{rate} \)
 17.5. \(T \leftarrow T \oplus_d t_i \)
18. **if** \((|C_m| < r) \) **then**
 19. \(IS \leftarrow \pi(CIS_{rate} \oplus (ctr + m)|||CIS_{capacity}) \)
 20. \(M_m \leftarrow IS_{rate} \oplus C_m \)
 21. \(IS_{rate} \leftarrow IS_{rate} \oplus 0^{lastBlockLength10^*} \)
 22. \(IS \leftarrow \pi(C_m||IS_{rate}(r-m)|||IS_{capacity}) \)
 23. \(t_m \leftarrow IS_{rate} \)
 24. \(T \leftarrow T \oplus_d t_m \)
25. **else**
 26. \(IS \leftarrow \pi(CIS_{rate} \oplus (ctr + m)|||CIS_{capacity}) \)
 27. \(M_m \leftarrow IS_{rate} \oplus C_m \)
 28. \(IS \leftarrow \pi(C_m||IS_{capacity}) \)
 29. \(t_m \leftarrow IS_{rate} \)
 30. \(T \leftarrow T \oplus_d t_m \)
 31. \(IS \leftarrow \pi(CIS_{rate} \oplus (ctr + m + 1)|||CIS_{capacity}) \)
 32. \(IS \leftarrow \pi(IS_{rate} \oplus 0^*|||IS_{capacity}) \)
 33. \(t_{m+1} \leftarrow IS_{rate} \)
 34. \(T \leftarrow T \oplus_d t_{m+1} \)
 35. \(M \leftarrow M_1||M_2||...||M_m \)
31. **if** \(T \neq T \) **then**
 32. **return** \(\downarrow \)
33. **else return** \((SMN, M) \)
of using 8-tuples here we use 4-tuples. The permutation operates on a \(b \) bits state and updates the internal state through a sequence of \(R \) successive transformations - rounds. The state \(IS \) can be represented as a list of \(N \) 4-tuples, each of length \(\omega \)-bits, where \(b = N \times 4 \times \omega \), i.e.,

\[
IS = \left\{ (IS_{11}, IS_{12}, IS_{13}, IS_{14}), (IS_{21}, IS_{22}, IS_{23}, IS_{24}), \ldots, (IS_{N1}, IS_{N2}, IS_{N3}, IS_{N4}) \right\}.
\] (1.1)

The general permutation function \(\pi \) consists of three main transformations \(\mu, \nu, \sigma \) : \(\mathbb{Z}_2^{2\omega} \to \mathbb{Z}_2^{2\omega} \), where \(\mathbb{Z}_2^{2\omega} \) is the set of all integers between 0 and \(2^\omega - 1 \). These transformations do the work of diffusion and nonlinear mixing of the input.

The following operations are applied:

- Addition + modulo \(2^\omega \);
Table 1.2: The rotation vectors used in μ and ν.

<table>
<thead>
<tr>
<th>ω</th>
<th>$\rho_{1.\omega}$</th>
<th>$\rho_{2.\omega}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>(1, 4, 9, 11)</td>
<td>(2, 5, 7, 13)</td>
</tr>
<tr>
<td>32</td>
<td>(5, 11, 17, 23)</td>
<td>(3, 10, 19, 29)</td>
</tr>
<tr>
<td>64</td>
<td>(7, 19, 31, 53)</td>
<td>(11, 23, 37, 59)</td>
</tr>
</tbody>
</table>

- Rotate left (circular left shift) operation, $ROTL^\rho(X)$, where X is a ω-bit word and ρ is an integer with $0 \leq \rho < \omega$;
- Bitwise XOR operation \oplus on ω-bit words.

Let $X = (X_0, X_1, X_2, X_3)$, $Y = (Y_0, Y_1, Y_2, Y_3)$ and $Z = (Z_0, Z_1, Z_2, Z_3)$ be three 4-tuples of ω-bit words.

Further, let us denote by \ast the following operation:

$$Z = X \ast Y \equiv \sigma(\mu(X) \oplus_4 \nu(Y))$$

where \oplus_4 is the component-wise addition of two 4-dimensional vectors in $(\mathbb{Z}_{2^\omega})^4$.

An algorithmic definition of the \ast operation over two 4-dimensional vectors X and Y for different word sizes is given in Table 1.9, Table 1.10 and Table 1.11.

Also a graphical representation of the \ast operation is given in Figure 1.7.

The following is a formalization of the \ast operation (adopted from [7]).

The left rotation of a ω-bit word X by ρ positions denoted by $ROTL^\rho(X)$, can be expressed as a linear matrix–vector multiplication over the ring $(\mathbb{Z}_2, +, \cdot)$ i.e. $ROTL^\rho(X) = E^\rho \cdot X$ where $E^\rho \in \mathbb{Z}_2^4 \times \mathbb{Z}_2^4$ is a matrix obtained from the identity matrix by rotating its columns by r positions in the direction top to bottom. Further on, if we have a vector $X \in (\mathbb{Z}_{2^\omega})^4$ represented as $X = (X_0, X_1, X_2, X_3)$ and we want to rotate all X_i by ρ_i ($0 \leq i < 4$) positions to the left, then we denote the operation by $ROTL^\rho(X)$, where $\rho = (\rho_0, \ldots, \rho_3) \in \{0, 1, \ldots, \omega - 1\}^4$ is a rotation vector. The operation $ROTL^\rho(X)$ can also be represented as a linear matrix–vector multiplication over the ring $(\mathbb{Z}_2, +, \cdot)$ i.e.
1.3 The π-function

Table 1.3: The matrices \hat{A}_1, \hat{A}_2, \hat{A}_3, and \hat{A}_4.

$$
\begin{array}{c|c|c|c}
\hat{A}_1 & \hat{A}_2 & \hat{A}_3 & \hat{A}_4 \\
(\text{const}_{1,\mu\omega}) & (1 1 1 0) & (1 1 1 0) & (1 1 1 0) \\
(\text{const}_{2,\mu\omega}) & (1 1 0 1) & (1 1 1 0) & (0 1 1 1) \\
(\text{const}_{3,\mu\omega}) & (1 0 1 1) & (0 1 1 1) & (1 1 0 1) \\
(\text{const}_{4,\mu\omega}) & (0 1 1 1) & (1 0 1 1) & (1 1 1 0) \\
\end{array}
$$

$\text{ROTL}^\rho(X) = D^\rho \cdot X$ where $D^\rho \in \mathbb{Z}_2^{4\omega} \times \mathbb{Z}_2^{4\omega}$,

$$
D^\rho = \begin{pmatrix}
E^{\rho_0} & 0 & 0 & 0 \\
0 & E^{\rho_1} & 0 & 0 \\
0 & 0 & E^{\rho_2} & 0 \\
0 & 0 & 0 & E^{\rho_3}
\end{pmatrix},
$$

and the submatrices $E^{\rho_i} \in \mathbb{Z}_2^{4\omega} \times \mathbb{Z}_2^{4\omega}$, $0 \leq i < 4$ are obtained from the identity matrix by rotating its columns by ρ_i positions in the direction top to bottom, and the submatrices $0 \in \mathbb{Z}_2^{4\omega} \times \mathbb{Z}_2^{4\omega}$ are the zero matrices.

Furthermore, we use the following notations:

- $\hat{A}_1, \hat{A}_3 : \mathbb{Z}_2^{4\omega} \rightarrow \mathbb{Z}_2^{4\omega}$ are two bijective transformations in $\mathbb{Z}_2^{4\omega}$ over the ring $(\mathbb{Z}_2^{4\omega}, +, \cdot)$ where $\omega = 8, 16, 32, 64$. The mappings \hat{A}_i, $i = 1, 3$ can be described as:

$$
\hat{A}_i(X) = C_i + A_i \cdot X,
$$

where $C_i \in \mathbb{Z}_2^{4\omega}$, $i = 1, 2$ are two constant vectors and A_1 and A_3 are two 4×4 invertible matrices over the ring $(\mathbb{Z}_2^{4\omega}, +, \cdot)$. Also these matrices are MDS (maximum distance separable) matrices which redound to have maximal diffusion of the bits. All elements in these two matrices are either 0 or 1, since we want to avoid the operations of multiplication (as more costly microprocessor operations) in the ring $(\mathbb{Z}_2^{4\omega}, +, \cdot)$, and stay only with operations of addition.

- $\hat{A}_2, \hat{A}_4 : \mathbb{Z}_2^{4\omega} \rightarrow \mathbb{Z}_2^{4\omega}$ are two linear bijective transformations that are described by two invertible matrices (we use the same notation: \hat{A}_2, \hat{A}_4) of order $q \times q$ over the ring $(\mathbb{Z}_2^{4\omega}, +, \cdot)$ ($q = 4\omega$). Since we want to apply XOR operations on ω–bit registers,
the matrices A_2 and A_4 will be of the form
\[
\begin{pmatrix}
B_{1,1} & B_{1,2} & B_{1,3} & B_{1,4} \\
B_{2,1} & B_{2,2} & B_{2,3} & B_{2,4} \\
B_{3,1} & B_{3,2} & B_{3,3} & B_{3,4} \\
B_{4,1} & B_{4,2} & B_{4,3} & B_{4,4}
\end{pmatrix},
\]
where $B_{i,j} \in \mathbb{Z}_2^2 \times \mathbb{Z}_2^2$, $1 \leq i, j \leq 4$ are either the identity matrix or the zero matrix i.e. $B_{i,j} \in \{0, 1\}$.

Now we give the formal definitions for the permutations: σ, μ and ν.

Definition 1. The transformation $\sigma : \mathbb{Z}_2^4 \rightarrow \mathbb{Z}_2^4$ is defined as:
\[
\sigma(X_0, X_1, X_2, X_3) = (X_3, X_0, X_1, X_2)
\]

Lemma 1. The transformation σ is a permutation.

Definition 2. The transformations $\mu : \mathbb{Z}_2^4 \rightarrow \mathbb{Z}_2^4$ and $\nu : \mathbb{Z}_2^4 \rightarrow \mathbb{Z}_2^4$ are defined as:
\[
\mu \equiv \hat{A}_1 \circ \text{ROTL}^{\rho_{1,\omega}} \circ \hat{A}_2
\]
\[
\nu \equiv \hat{A}_3 \circ \text{ROTL}^{\rho_{2,\omega}} \circ \hat{A}_4
\]
where the rotation vectors $\rho_{i,\omega}$, $i = 1, 2$, $\omega = 16, 32, 64$ are given in Table 1.2 and the matrices \hat{A}_1, \hat{A}_2, \hat{A}_3 and \hat{A}_4 are given in Table 1.3. In Table 1.3, the symbols $1, 0 \in \mathbb{Z}_2^2 \times \mathbb{Z}_2^2$ denote the identity matrix and the zero matrix, and the constants $\text{const}_{i,\omega}$, $i = 1, 2$, $\omega = 16, 32, 64$ are given (in hexadecimal notation) in Table 1.4 and Table 1.5. The rationale for choosing these constants is given in Section 5.2.

<table>
<thead>
<tr>
<th>$\text{const}_{i,\omega}$</th>
<th>μ_{16}</th>
<th>μ_{32}</th>
<th>μ_{64}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0xF0E8</td>
<td>0xF0E8E4E2</td>
<td>0xF0E8E4E2E1D8D4D2</td>
</tr>
<tr>
<td>2</td>
<td>0xE4E2</td>
<td>0xE1D8D4D2</td>
<td>0xD1CCAC9C6C5C3B8</td>
</tr>
<tr>
<td>3</td>
<td>0xE1D8</td>
<td>0xD1CCAC9C</td>
<td>0xB4B2B1ACAA9A6A5</td>
</tr>
<tr>
<td>4</td>
<td>0xD4D2</td>
<td>0xC6C5C3B8</td>
<td>0xA39C9A999695938E</td>
</tr>
</tbody>
</table>
Table 1.5: List of constants used in ν transformation.

<table>
<thead>
<tr>
<th>const $\nu\omega$</th>
<th>ν_{16}</th>
<th>ν_{32}</th>
<th>ν_{64}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0xD1CC</td>
<td>0x8D8B7778472716C</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0xCAC9</td>
<td>0x6A696665635C5A59</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0xC6C5</td>
<td>0x5655534E4D4B473C</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0xC3B8</td>
<td>0x9695938E</td>
<td>0x3A39363532E2D2B</td>
</tr>
</tbody>
</table>

Lemma 2. The transformations μ and ν are permutations of $\mathbb{Z}_{2^\omega}, \omega = 16, 32, 64$.

Proof. The proof follows immediately from the fact that all transformations $A_i, i = 1, 2, 3, 4$ and $ROTL^{\rho \omega}, i = 1, 2, \omega = 16, 32, 64$ are expressed by invertible matrices over the rings $(\mathbb{Z}_{2^\omega}, +, \ldots), \omega = 16, 32, 64$ or over the ring $(\mathbb{Z}_2, +, \ldots)$. \qed

Theorem 1. The operation $*: (\mathbb{Z}_{2^\omega})^2 \rightarrow \mathbb{Z}_{2^\omega}$ defined as:

$$X * Y = \sigma(\mu(X) \oplus_4 \nu(Y))$$

is a permutation. \qed

Let us recall equation (1.1) where the internal state is presented as $IS = (I_1, I_2, \ldots, I_N)$. One round of the π function consists of two consecutive transformations E_1 and E_2 defined as follows.

Definition 3. The function $E_1: (\mathbb{Z}_{2^\omega})^{N+1} \rightarrow (\mathbb{Z}_{2^\omega})^N$ used in the π function is defined as:

$$E_1(C, I_1, \ldots, I_N) = (J_1, \ldots, J_N), \text{ where}$$

$$J_1 = C * I_1,$$

$$J_i = J_{i-1} * I_i, \quad i = 2, \ldots, N$$

where C is a 4-tuple of ω-bit constant values.

Definition 4. The function $E_2: (\mathbb{Z}_{2^\omega})^{N+1} \rightarrow (\mathbb{Z}_{2^\omega})^N$ used in π function is defined as:

$$E_2(C, I_1, \ldots, I_N) = (J_1, \ldots, J_N), \text{ where}$$

$$J_N = I_N * C,$$

$$J_{N-i} = I_{N-i} * J_{N-i+1}, \quad i = 1, \ldots, N - 1$$
where C is a 4-tuple of ω-bit constant values.

Finally, one round of the π function is defined as:

$$\pi(I_1, \ldots, I_N) = E_2(C_2, E_1(C_1, I_1, \ldots, I_N))$$

One round of the cipher is graphically described in Figure 1.8. In the figure, the diagonal arrows can be interpreted as \times operations between the source and destination, and the vertical or horizontal arrows as equality signs "$ = "$.

The number of rounds R is a tweakable parameter. For π-Cipher v2.0 we recommend $R = 3$. The complete formula for the π function with $R = 3$ is the following:

$$\pi(I_1, \ldots, I_N) = E_2(C_6, E_1(C_5, E_2(C_4, E_1(C_3, E_2(C_2, E_1(C_1, I_1, \ldots, I_N)))))$$

The constants C_1, C_2, \ldots, C_6 are generated in the same way as the constants of the \times operation and their values (in hexadecimal notation) for different word sizes are given in Table 1.6, Table 1.7 and Table 1.8.
1.3 The π-function

Table 1.6: Round constants for π16-Cipher

$$
\begin{align*}
C1 &= \{0xB4B2, 0xB1AC, 0xAAA9, 0xA6A5\} \\
C2 &= \{0xA39C, 0x9A99, 0x9695, 0x938E\} \\
C3 &= \{0x8D8B, 0x8778, 0x7472, 0x716C\} \\
C4 &= \{0x6A69, 0x6665, 0x635C, 0x5A59\} \\
C5 &= \{0x5655, 0x534E, 0x4D4B, 0x473C\} \\
C6 &= \{0x3A39, 0x3635, 0x332E, 0x2D2B\}
\end{align*}
$$

Table 1.7: Round constants for π32-Cipher

$$
\begin{align*}
C1 &= \{0xB4B28778, 0x7472716C, 0x6A696665, 0x635C5A59\} \\
C2 &= \{0x565534E, 0x4D4B473C, 0x3A393635, 0x332E2D2B\} \\
C3 &= \{0x271E1D1B, 0x170FF0E8, 0xE4E2E1D8, 0xD4D2D1CC\} \\
C4 &= \{0x9A999695, 0x938E8D8B, 0x87787472, 0x716C6A69\} \\
C5 &= \{0x6A696665, 0x635C5A59, 0x5A595655, 0x534E4D4B, 0x473C3A39\}
\end{align*}
$$

Table 1.8: Round constants for π64-Cipher

$$
\begin{align*}
C1 &= \{0x271E1D1B170FF0E8, 0xE4E2E1D8, 0x635C5A59, 0x5A595655, 0x534E4D4B, 0x473C3A39\} \\
C2 &= \{0x9A999695, 0x87787472, 0x6665635C5A59, 0x565534E, 0x4D4B473C\} \\
C3 &= \{0x271E1D1B170FF0E8, 0xE4E2E1D8, 0x635C5A59, 0x5A595655, 0x534E4D4B, 0x473C3A39\} \\
C4 &= \{0xA6A5A39C9A99, 0x9695938E8D8B, 0x7472716C, 0x6A696665, 0x635C5A59, 0x5A595655, 0x534E4D4B, 0x473C3A39\} \\
C5 &= \{0x9A999695, 0x87787472, 0x6665635C5A59, 0x5A595655, 0x534E4D4B, 0x473C3A39\} \\
C6 &= \{0xC3B8B4B21ACAA9, 0xA6A5A39C9A99, 0x9695938E8D8B, 0x7472716C, 0x6A696665, 0x635C5A59, 0x5A595655, 0x534E4D4B, 0x473C3A39\}
\end{align*}
$$
1.3 The π-function

Table 1.9: An algorithmic description of the ARX operation \ast for 16–bit words.

<table>
<thead>
<tr>
<th>* operation for 16–bit words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: $X = (X_0, X_1, X_2, X_3)$ and $Y = (Y_0, Y_1, Y_2, Y_3)$ where X_i and Y_i are 16–bit variables.</td>
</tr>
<tr>
<td>Output: $Z = (Z_0, Z_1, Z_2, Z_3)$ where Z_i are 16–bit variables.</td>
</tr>
<tr>
<td>Temporary 16–bit variables: T_0, \ldots, T_{11}.</td>
</tr>
</tbody>
</table>

μ–transformation for X:

1. $T_0 \leftarrow ROTL^1(0x0F0E8 \ + \ X_0 \ + \ X_1 \ + \ X_2)$;
 $T_1 \leftarrow ROTL^4(0x0E4E2 \ + \ X_0 \ + \ X_1 \ + \ X_3)$;
 $T_2 \leftarrow ROTL^9(0x0E1D8 \ + \ X_0 \ + \ X_2 \ + \ X_3)$;
 $T_3 \leftarrow ROTL^{11}(0x0D4D2 \ + \ X_1 \ + \ X_2 \ + \ X_3)$;

2. $T_4 \leftarrow T_0 \oplus T_1 \oplus T_3$;
 $T_5 \leftarrow T_0 \oplus T_1 \oplus T_2$;
 $T_6 \leftarrow T_1 \oplus T_2 \oplus T_3$;
 $T_7 \leftarrow T_0 \oplus T_2 \oplus T_3$;

ν–transformation for Y:

1. $T_0 \leftarrow ROTL^2(0x0D1CC \ + \ Y_0 \ + \ Y_2 \ + \ Y_3)$;
 $T_1 \leftarrow ROTL^3(0x0CAC9 \ + \ Y_1 \ + \ Y_2 \ + \ Y_3)$;
 $T_2 \leftarrow ROTL^7(0x0C6C5 \ + \ Y_0 \ + \ Y_1 \ + \ Y_2)$;
 $T_3 \leftarrow ROTL^{13}(0x0C3B8 \ + \ Y_0 \ + \ Y_1 \ + \ Y_3)$;

2. $T_8 \leftarrow T_1 \oplus T_2 \oplus T_3$;
 $T_9 \leftarrow T_0 \oplus T_2 \oplus T_3$;
 $T_{10} \leftarrow T_0 \oplus T_1 \oplus T_3$;
 $T_{11} \leftarrow T_0 \oplus T_1 \oplus T_2$;

σ–transformation for both $\mu(X)$ and $\nu(Y)$:

1. $Z_3 \leftarrow T_4 + T_8$;
 $Z_0 \leftarrow T_5 + T_9$;
 $Z_1 \leftarrow T_6 + T_{10}$;
 $Z_2 \leftarrow T_7 + T_{11}$;
1.3 The π-function

Table 1.10: An algorithmic description of the ARX operation \ast for 32–bit words.

<table>
<thead>
<tr>
<th>* operation for 32–bit words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: $X = (X_0, X_1, X_2, X_3)$ and $Y = (Y_0, Y_1, Y_2, Y_3)$ where X_i and Y_i are 32–bit variables.</td>
</tr>
<tr>
<td>Output: $Z = (Z_0, Z_1, Z_2, Z_3)$ where Z_i are 32–bit variables.</td>
</tr>
<tr>
<td>Temporary 32–bit variables: T_0, \ldots, T_{11}.</td>
</tr>
</tbody>
</table>

μ–transformation for X:

1. $T_0 \leftarrow ROLTL^5(0x0E8E4E2) + X_0 + X_1 + X_2);

2. $T_1 \leftarrow ROLTL^{11}(0xE1D8D4D2) + X_0 + X_1 + X_3);

3. $T_2 \leftarrow ROLTL^{17}(0xD1CCAC9) + X_0 + X_2 + X_3);

4. $T_3 \leftarrow ROLTL^{23}(0xC6C5C3B8) + X_1 + X_2 + X_3);

5. $T_4 \leftarrow T_0 \oplus T_1 \oplus T_3$;

6. $T_5 \leftarrow T_0 \oplus T_1 \oplus T_2$;

7. $T_6 \leftarrow T_1 \oplus T_2 \oplus T_3$;

8. $T_7 \leftarrow T_0 \oplus T_2 \oplus T_3$;

ν–transformation for Y:

1. $T_0 \leftarrow ROLTL^3(0xB4B2B1AC) + Y_0 + Y_2 + Y_3);

2. $T_1 \leftarrow ROLTL^{10}(0xAA9A6A5) + Y_0 + Y_2 + Y_3);

3. $T_2 \leftarrow ROLTL^{19}(0xA39C9A99) + Y_0 + Y_1 + Y_2);

4. $T_3 \leftarrow ROLTL^{29}(0x9695938E) + Y_0 + Y_1 + Y_3);

5. $T_8 \leftarrow T_1 \oplus T_2 \oplus T_3$;

6. $T_9 \leftarrow T_0 \oplus T_2 \oplus T_3$;

7. $T_{10} \leftarrow T_0 \oplus T_1 \oplus T_3$;

8. $T_{11} \leftarrow T_0 \oplus T_1 \oplus T_2$;

σ–transformation for both $\mu(X)$ and $\nu(Y)$:

1. $Z_3 \leftarrow T_4 + T_8$;

2. $Z_0 \leftarrow T_5 + T_9$;

3. $Z_1 \leftarrow T_6 + T_{10}$;

4. $Z_2 \leftarrow T_7 + T_{11}$;
1.3 The π-function

Table 1.11: An algorithmic description of the ARX operation $*$ for 64-bit words.

<table>
<thead>
<tr>
<th>* operation for 64–bit words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: $X = (X_0, X_1, X_2, X_3)$ and $Y = (Y_0, Y_1, Y_2, Y_3)$ where X_i and Y_i are 64-bit variables.</td>
</tr>
<tr>
<td>Output: $Z = (Z_0, Z_1, Z_2, Z_3)$ where Z_i are 64-bit variables.</td>
</tr>
<tr>
<td>Temporary 64–bit variables: T_0, \ldots, T_{11}.</td>
</tr>
</tbody>
</table>

μ–transformation for X:

1. $T_0 \leftarrow ROTL^7(0xF0E8E4E2E1D8D4D2) + X_0 + X_1 + X_2$;
2. $T_1 \leftarrow ROTL^{19}(0xD1CCAC9C6C5C3B8) + X_0 + X_1 + X_3$;
3. $T_2 \leftarrow ROTL^{31}(0xB4B2B1ACAA9A6A5) + X_0 + X_2 + X_3$;
4. $T_3 \leftarrow ROTL^{53}(0xA39C9A99695938E) + X_1 + X_2 + X_3$;

ν–transformation for Y:

1. $T_0 \leftarrow ROTL^{11}(0x8D8B87787472716C) + Y_0 + Y_2 + Y_3$;
2. $T_1 \leftarrow ROTL^{23}(0x6A96665635C5A59) + Y_1 + Y_2 + Y_3$;
3. $T_2 \leftarrow ROTL^{37}(0x5655534E4D4B473C) + Y_0 + Y_1 + Y_2$;
4. $T_3 \leftarrow ROTL^{50}(0xA393635332E2D2B) + Y_0 + Y_1 + Y_3$;

σ–transformation for both $\mu(X)$ and $\nu(Y)$:

1. $Z_3 \leftarrow T_4 + T_8$;
2. $Z_0 \leftarrow T_5 + T_9$;
3. $Z_1 \leftarrow T_6 + T_{10}$;
4. $Z_2 \leftarrow T_7 + T_{11}$;
Chapter 2

Security goals

Table 2.1: A list of security goals for the \(\pi \)-Cipher.

<table>
<thead>
<tr>
<th>Goal</th>
<th>(\Pi_{16} \text{Cipher096v2})</th>
<th>(\Pi_{32} \text{Cipher128v2})</th>
<th>(\Pi_{64} \text{Cipher128v2})</th>
<th>(\Pi_{64} \text{Cipher256v2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confidentiality for the plaintext</td>
<td>96</td>
<td>128</td>
<td>128</td>
<td>256</td>
</tr>
<tr>
<td>Confidentiality for the secret message number SMN</td>
<td>96</td>
<td>128</td>
<td>128</td>
<td>256</td>
</tr>
<tr>
<td>Integrity for the plaintext</td>
<td>96</td>
<td>128</td>
<td>128</td>
<td>256</td>
</tr>
<tr>
<td>Integrity for the associated data</td>
<td>96</td>
<td>128</td>
<td>128</td>
<td>256</td>
</tr>
<tr>
<td>Integrity for the public message number PMN</td>
<td>96</td>
<td>128</td>
<td>128</td>
<td>256</td>
</tr>
<tr>
<td>Integrity for the secret message number SMN</td>
<td>96</td>
<td>128</td>
<td>128</td>
<td>256</td>
</tr>
<tr>
<td>Confidentiality for the plaintext (M), when ((K, AD, (PMN, SMN_1))) and ((K, AD, (PMN, SMN_2)))</td>
<td>96</td>
<td>128</td>
<td>128</td>
<td>256</td>
</tr>
<tr>
<td>Integrity for the plaintext (M), when ((K, AD, (PMN, SMN_1))) and ((K, AD, (PMN, SMN_2)))</td>
<td>96</td>
<td>128</td>
<td>128</td>
<td>256</td>
</tr>
</tbody>
</table>

We want to emphasize our position that the security level of 80 bits should be considered as insecure and should be abandoned in future cryptographic designs. This is
due to the recent reported practical speed of many different computing systems (GPUs, supercomputers, FPGAs). That is why our lowest level for security is 96 bits of security.

Users have two options for nonces in π-Cipher. A nonce can be $NONCE = PMN$ or $NONCE = (PMN, SMN)$.

If the legitimate key holder uses the same $NONCE$ to encrypt two different pairs of (plaintext, associated data) (pM_1, AD_q) and (pM_2, AD_q) with the same secret key K then the confidentiality and the integrity of the plaintexts are not preserved in π–Cipher. **Thus, the first six goals in Table 2 are achieved under the assumption that PMN is always different for any two different pairs of (plaintext, associated data) (M_1, AD) and (M_2, AD) with the same secret key K.**

Additionally, π-Cipher offers an intermediate level of robustness when a legitimate key holder uses the same secret key K, the same associated data AD, the same public message number PMN but different secret message numbers SMN_1 and SMN_2 for encrypting two different plaintexts M_1 and M_2. In that case confidentiality and integrity of the plaintexts are preserved. **However, in that case the confidentiality of SMN$_1$ and SMN$_2$ is not preserved.**
Chapter 3

Security analysis

3.1 Security proof of π-Cipher

The security proof is based on the detailed proof for the sponge based authenticated ciphers given by Bart Mennink at al. in the ASIACRYPT 2014 paper [11]. Unlike other sponge-based schemes, π-Cipher offers parallelism in the encryption part and processing the associated data part. The number of parallel chains depends on the number of data blocks that every part has (a chains in the phase of the associated data and m chains in the phase of the encryption). However π-Cipher starts with the initialization phase, where by a padding function \((K, N)\) is mapped to \((K||N||10^*)\) and processed by the π-function. After the initialization part, the state is branched into a new states and associated data is processed. These a states are merged into one new state and the newly obtained state is branched into m new states where message blocks are encrypted. Finally the tag \(T\) is computed. For the privacy proof, we consider an adversary that makes \(q_p\) permutation queries and \(q_e\) encryption queries of total length \(\lambda_e\). Let \(\varepsilon_K\) be an encryption query, consisting of a associated data blocks, and m message blocks. So the corresponding state values are given as follows:

\[
\begin{pmatrix}
 s_{\text{init}}; \\
 s_{1,0}^{AD} s_{1,1}^{AD} ; \\
 \vdots \; \vdots \\
 s_{a,0}^{AD} s_{a,1}^{AD} \\
\end{pmatrix}; \quad
\begin{pmatrix}
 s_{\text{CIS}}; \\
 s_0^{SMN}; \\
 s_1^{SMN}; \\
\end{pmatrix}, \\
\begin{pmatrix}
 s_{1,0}^{M} s_{1,1}^{M} \\
 \vdots \; \vdots \\
 s_{m,0}^{M} s_{m,1}^{M} \\
\end{pmatrix}
\]

Here, if the \(j\)-th encryption query is of length \(a + m\), then the number of state values \(\sigma_{\varepsilon,j}\) (calls to the π-function) is \(2a + 2m + 4\) (2 of them is for the processing of \(SMN\)).
3.1 Security proof of π-Cipher

So the total number of π-function evaluations via the encryption queries is:

$$\sigma_e := \sum_{j=1}^{q_e} \sigma_{e,j} \leq q_e (2a + 2m + 4) = 2\lambda_e + 4q_e.$$ \hspace{1cm} (3.1)

Also for decryption queries the number is the same and is denoted as σ_D and $\sigma_{D,j}$ analogously.

3.1.1 Privacy of π-Cipher

Theorem 2. Let $\Pi = (E, D)$ be the proposed authenticated encryption scheme with an ideal permutation π which operates on b bits. Then,

$$\text{Adv}^{\text{priv}}_\Pi(q_p, q_e, \lambda_e) \leq \frac{(q_p + \sigma_e)^2}{2^b} + \frac{q_p + \sigma_e}{2^k} + \frac{q_p r}{2^c} + \frac{q_e a}{2^r} + \sqrt{\frac{8c \sigma_e q_p}{2^b}},$$

where σ_e is defined in (3.1).

For the privacy proof we need to obtain an upper bound for the advantage of an adversary who can distinguish the output of the proposed scheme with a random oracle in the ideal permutation model.

$$\text{Adv}^{\text{priv}}_\Pi(q_p, q_e, \lambda_e) \leq \Delta_{\mathcal{A}}(\pi^\pm, E_K; \pi^\pm, \mathcal{S}).$$ \hspace{1cm} (3.2)

With replacing the permutation function π with some random function f from $0, 1^b$ to $0, 1^b$ and using the PRP/PRF Switching Lemma, we have:

$$\Delta_{\mathcal{A}}(\pi^\pm, E_K; \pi^\pm, \mathcal{S}) - \Delta_{\mathcal{A}}(f^\pm, E_K; f^\pm, \mathcal{S}) \leq \frac{(q_p + \sigma_e)(q_p + \sigma_e - 1)}{2^{b+1}} \leq \frac{(q_p + \sigma_e)^2}{2^{b+1}}.$$ \hspace{1cm} (3.3)

Now we will restrict our attention to an adversary with oracle access to $(f^\pm, \{E_K, \mathcal{S}\})$. Also we assume that the adversary only queries full blocks and that no padding rules are involved.

To aim the goal we define two collision events, guess and hit. Event guess corresponds to a primitive call in an encryption query hitting a direct primitive query or the opposite,
3.1 Security proof of \(\pi \)-Cipher

while hit corresponds to pairs of primitive calls that collide in encryption queries. So event is set to bad, if some of the events guess or hit occur.

\[
\Delta_{\phi}(f^\pm, E_K; f^\pm, \$) \leq \Pr(\phi f^\pm E_K \text{ sets event}). \tag{3.4}
\]

We define the probability of event is set as follows:

\[
\Pr(\text{guess} \lor \text{hit}) = \Pr(\text{guess} \lor \text{hit} | \neg(\text{key} \lor \text{multi}) + \Pr(\text{key} \lor \text{multi})) \tag{3.5}
\]

Event guess. This event may occur in the \(i \)-th permutation query (for \(i = 1, \cdots, q_p \)) or in any state evaluation of the \(j \)-th encryption query (for \(j = 1, \cdots, q_e \)). Denote that the state values of the \(j \)-th encryption query are as follows:

\[
\begin{pmatrix}
 \begin{bmatrix}
 s_{j,1,0}^{AD} & s_{j,1,1}^{AD} \\
 \vdots & \vdots \\
 s_{j,a,0}^{AD} & s_{j,a,1}^{AD}
 \end{bmatrix} & \\
 \begin{bmatrix}
 s_{j,1,0}^{CIS} & s_{j,0,1}^{SMN} & s_{j,1,1}^{SMN} \\
 \vdots & \vdots \\
 s_{j,m,0}^{M} & s_{j,1,m}^{M}
 \end{bmatrix}
\end{pmatrix}
\tag{3.6}
\]

We assume that event \((\text{guess} \lor \text{hit} \lor \text{key} \lor \text{multi})\) has not been set before and also event \((\text{key} \lor \text{multi})\) has not been set by this query before. From the further analysis we will exclude \(s_{j}^{\text{init}}\) from guess event because that case belongs to the key event. For \(i = 1, \cdots, q_p \) let \(j_i \in \{1, \cdots, q_e\} \) be the number of encryption queries made before the \(i \)-th permutation query. And for \(j = 1, \cdots, q_e \) let \(i_j \in \{1, \cdots, q_p\} \) be the number of permutation queries made before the \(j \)-th encryption query. Here we have two games, the first one is when we play with the permutation queries, and the other with encryption queries.

- In the first one the bad event occurs when input to the \(f^\pm(x_i, y_i) \) collide with the elements in set \(\mathcal{F} \). So for the forward query \(x_i \) there are at most \(\rho \) state values that have the same rate part, thus the capacity is unknown to the adversary and the bad event occurs with probability at most \(\rho/2^e \). For the inverse query the situation is more complicated. We take \(y_i \) from the set of all encryption queries made before the \(i \)-th permutation query. Therefore the probability that guess is set via a direct query to the primitive is at most \(\frac{q_p\rho}{2^e} + \sum_{i=1}^{q_p} \sum_{j=1}^{j_i} \frac{\sigma_{r,j}}{2^e} \).

- In the second one, bad event is set in the \(j \)-th encryption query for \(j \in 1, \cdots, q_e \). In this case we consider the probability that some of the states from (2) sets guess,
3.1 Security proof of π-Cipher

assuming that it has not been set before. Thus we have 3 subcases here.

1. The state value $s_{j,k,0}^{AD}$ for $k = 1, \ldots, a$, equals $f(s_{j}^{\text{init}}) \oplus \text{ctr} + k$ where ctr is some secret value not determined by the adversarial input. By assumption that $f(s_{j}^{\text{init}})$ is randomly drawn from $\{0, 1\}^b$, the probability to guess the state is at most $\frac{a_i}{2^b}$ (where i_j is the number of permutation queries made before the j-th encryption query). The state value $s_{j,k,1}^{AD}$ for $k = 1, \ldots, a$, equals $f(s_{j,k,0}^{AD}) \oplus AD_k$ where AD_k is a value determined by the adversarial input. The probability to guess the state is at most $\frac{a_i}{2^b}$.

2. $s_j^{CIS} = f(s_j^{\text{init}}) \oplus T'$ and is guessed with probability at most $i_j/2^b$

3. The same is situation in $s_{j,0}^{SMN}$ and $s_{j,1}^{SMN}$, probability is bound to $i_j/2^b$.

4. For the last branching (processing the message) we have the same situation as in the associated data part.

Concluding, the j-th encryption query sets guess with probability at most $\frac{a_i}{2^b} + \frac{a_j}{2^b} + 3 \frac{i_j}{2^b} + \frac{m_i}{2^b} + \frac{m_i}{2^b}$. Or summing over all q_e encryption queries, we get

$$\sum_{q_e=1}^{q_e} \frac{a_i}{2^b} + \frac{a_j}{2^b} + 3 \frac{i_j}{2^b} + \frac{m_i}{2^b} + \frac{m_i}{2^b} = \sum_{j=1}^{q_e} \frac{i_j(2a+2m+3)}{2^b} \leq \sum_{j=1}^{q_e} i_j \sigma_{\epsilon,j}.$$

Here we use that $\sum_{q_e}^{q_e} \sum_{j=1}^{q_e} \sigma_{\epsilon,j} \leq q_e \sigma_{\epsilon}$ with assumption that j_i always has its maximum value q_e and $\sum_{j=1}^{q_e} \sum_{k=1}^{q_e} i_j \leq q_e \sigma_{\epsilon}$ with assumption that i_j always has its maximum value q_e.

Concluding,

$$\Pr(\text{guess} \mid -(\text{key} \lor \text{multi})) \leq \frac{q_e \rho}{2^c} + \frac{q_e}{2^c} \sum_{i=1}^{q_e} \sum_{j=1}^{q_e} \frac{\sigma_{\epsilon,j}}{2^b} \sum_{j=1}^{q_e} \frac{i_j \sigma_{\epsilon,j}}{2^b}$$

$$\leq \frac{q_e \rho}{2^c} + \frac{2q_e \sigma_{\epsilon}}{2^b}. \quad (3.7)$$

Event hit. We need to find whether the event hit is set, or whether two independent states (with different parents) collide in the encryption queries. It is clear that for the initialization state s_{j}^{init} stands: $s_{j}^{\text{init}} \neq s_{j'}^{\text{init}}$ because of the uniqueness of the nonce. So here any state value $s_{j,k}$ hits an initial state value $s_{j',1}$ only if $[s_{j,k}]^k = K$ which happens with probability $\sigma_{\epsilon}/2^k$. In the other states ($\sigma_{\epsilon} - q_e$) for any two states $s_{j,k}, s_{j',k'}$ we have the following:

- $s_{j,i,0}^{AD} = f(s_{j}^{\text{init}}) \oplus (\text{ctr} + i), 1 \leq i \leq a$. Because of the fact that s_{j}^{init} is always fresh, collision between $s_{j,i,0}^{AD}$ and some older state will happen with probability no more
3.1 Security proof of π-Cipher

than $a/2^b$ for all i’s. Note that $s^{AD}_{j,i,0}$ can never collide with a state from the same query because of the incremental counter’s value. If $s^{AD}_{j,i,0}$ is a new state, then also it is a new input to f and $s^{AD}_{j,i,1}$ is a new one too. It hits a certain older state with probability $1/2^b$. If $s^{AD}_{j,i,1}$ is new for all i’s, then the output of the function f is random, and the tag T' generated from the associated data phase is random too.

- $s^{CIS}_j = f(s^{init}_j) \oplus T'$ hits a state from an older query with probability at most $1/2^b$. Here we will have a special case. The state s^{CIS}_j can collide with some of the states $s^{AD}_{j,i,0}$ from this query if and only if $[(ctr + i)\|0^*]$ collide with T' (they have the same parent state s^{init}_j). Probability for this is no more than $a/2^r$.

- $s^{SMN}_{j,0} = f(s^{CIS}_j) \oplus (ctr + a + 1)$. This state is new, so it can hit some older state with probability $1/2^b$, and the same is for $s^{SMN}_{j,1}$.

- $s^{SMN}_{j,i,0} = f(s^{SMN}_{j,i,0}) \oplus (ctr + a + 1 + i)$, so it is a new state for all parallel instances i and can collide with some other state from an older query with probability at most $m/2^b$. However, if $s^{SMN}_{j,i,0}$ is a new state, also new states are $s^{SMN}_{j,i,1}$ for all i’s and the output of the function f is random. The tag that is generated at the end is a random value.

In total, the j-th encryption query sets event hit with probability at most: $\frac{(2a+3+2m)}{2^b} (\sigma_{\varepsilon,1} + \sigma_{\varepsilon,2} + \ldots + \sigma_{\varepsilon,j-1}) + \frac{a}{2^r}$

Summing over all queries,

$$Pr(hit|\neg(key \lor multi)) \leq \frac{\sigma_{\varepsilon}}{2^k} + \sum_{j=1}^{q} \frac{(2a + 3 + 2m)}{2^b} (\sigma_{\varepsilon,1} + \ldots + \sigma_{\varepsilon,j-1}) + \frac{a}{2^r} \leq \frac{\sigma_{\varepsilon}}{2^k} + \sigma_{\varepsilon}a/2^r + \frac{(\sigma_{\varepsilon} - q_\varepsilon)}{2^b} \leq \frac{\sigma_{\varepsilon}}{2^k} + \frac{q_\varepsilon}2a + \frac{(\sigma_{\varepsilon} - q_\varepsilon)^2}{2^{b+1}}$$

$$\text{(3.8)}$$

Event key. $Pr(key) \leq q_\rho/2^k$.

Event multi. Event $multi(j,k)$ is used to bound the number of states that collide in the rate part. So, consider a new state value $s_{j,k-1}$; then for a fixed state value $x \in \{0,1\}^b$ it satisfies $f(s_{j,k-1}) = x$ or $s_{j,k} = f(s_{j,k-1}) \oplus w = x$ for some predetermined value w with probability $2/2^k$. Now, let $\alpha \in \{0,1\}^r$, more than ρ state values hit α with
3.1 Security proof of \(\pi \)-Cipher

probability at most \((\tfrac{n}{e})^2 (2/2)^p\). According to the Stirling’s approximation for factorials \((n!) \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n\), we have \((\tfrac{n}{e})^2 (2/2)^p \leq (\tfrac{2\pi n}{e})^p\). Considering any possible choice of \(\alpha\) we obtain that

\[
\Pr(\text{multi}) = 2^p \left(\frac{2e\sigma}{\rho^2 r}\right)^p. \tag{3.9}
\]

So at the end, to complete the proof we need to make addition of the four bounds as:

\[
\Pr(\text{guess } \lor \text{ hit}) = \Pr(\text{guess } \lor \text{ hit}|-(\text{key } \lor \text{ multi}) + \Pr(\text{key } \lor \text{ multi})) \\
\leq q_p + \sigma_e + \frac{(\sigma_e - q_e)^2}{2^{b+1}} + \frac{q_p \rho}{2^c} + \frac{q_p a}{2^r} + \frac{2q_p \sigma_e}{2^b} + 2^r \left(\frac{2e\sigma}{\rho^2 r}\right)^p \tag{3.10}
\]

To simplify previous evaluation and also substitute \(\rho\) with some known values, we put \(\rho = \max\{r, \sqrt{\frac{2e\sigma}{q_p^2}}\}\) and get the following:

\[
\Pr(\text{guess } \lor \text{ hit}) \leq \frac{q_p + \sigma_e}{2^b} + \frac{(\sigma_e - q_e)^2}{2^{b+1}} + \frac{q_p r}{2^c} + \frac{q_p a}{2^r} + \frac{2q_p \sigma_e}{2^b} + \sqrt{\frac{8e\sigma q_p}{2^b}} \tag{3.11}
\]

At the end, we have the final bounds for privacy of \(\pi\)-Cipher:

\[
\text{Adv}_H^{\text{priv}}(\mathcal{A}) \leq \frac{(q_p + \sigma_e)^2}{2^{b+1}} + \frac{q_p + \sigma_e}{2^b} + \frac{q_p \sigma_e + (\sigma_e - q_e)^2}{2^{b+1}} + \frac{q_p r}{2^c} + \frac{q_p a}{2^r} + \sqrt{\frac{8e\sigma q_p}{2^b}} \tag{3.12}
\]

We assume that \(\frac{q_p a + (\sigma_e - q_e)^2}{2^{b+1}} \leq \frac{q_p + \sigma_e}{2^{b+1}}\) and get the following:

\[
\text{Adv}_H^{\text{priv}}(\mathcal{A}) \leq \frac{(q_p + \sigma_e)^2}{2^b} + \frac{q_p + \sigma_e}{2^b} + \frac{q_p r}{2^c} + \frac{q_p a}{2^r} + \sqrt{\frac{8e\sigma q_p}{2^b}} \tag{3.13}
\]
3.1 Security proof of π-Cipher

3.1.2 Authenticity of π-Cipher

Theorem 3. Let $\Pi = (\mathcal{E}, \mathcal{D})$ be the proposed authenticated encryption scheme with an ideal permutation π which operates on b bits. Then,

$$Adv_{\Pi}^{\text{auth}}(q_p, q_a, \lambda, q_D, \lambda_D) \leq \frac{(q_p + \sigma_a + \sigma_D)^2}{2^b} + \frac{q_D}{2^r} + \frac{q_p + \sigma_a + \sigma_D}{2^k} + \frac{q_p r}{2^c} + \frac{q_p a + q_D a}{2^r} + \sqrt{\frac{8 \epsilon \sigma a q_p}{2^k} + \frac{\sigma_D (q_p + \sigma_a + \sigma_D / 2)}{2^c}},$$

where σ_a and σ_D are defined in (3.1).

A forgery of an AE scheme is defined as the ability of an adversary A to generate a valid (N, AD, C, T) tuple, without directly querying it to the encryption oracle. Also an adversary attempts to make a decryption queries that does not result in \bot.

Let $\Pi = (\mathcal{E}, \mathcal{D})$ be π-Cipher authenticated scheme with ideal permutation (π-function) which operates on $b(r + c)$ bits. The adversary A is given access to the Encryption oracle \mathcal{E}_K, Decryption oracle \mathcal{D}_K, permutation function p and its inverse p^{-1} oracle. Our goal is to bound the adversary’s advantage to forge the scheme $\Pi = (\mathcal{E}, \mathcal{D})$:

$$Adv_{\Pi}^{\text{auth}}(\mathcal{A}) = \Pr(\mathcal{A}^{p, \mathcal{E}_K, \mathcal{D}_K} \text{forges})$$

(3.14)

Using the PRP/PRF Switching Lemma and knowing that adversary can ask no more than $q_p + \sigma_a$ evaluations to the function f, we have:

$$\Pr(\mathcal{A}^{p, \mathcal{E}_K, \mathcal{D}_K} \text{forges}) - \Pr(\mathcal{A}^{f, \mathcal{E}_K, \mathcal{D}_K} \text{forges}) \leq \frac{(q_p + \sigma_a + \sigma_D)(q_p + \sigma_a + \sigma_D - 1)}{2^b + 1} \leq \frac{(q_p + \sigma_a + \sigma_D)^2}{2^b + 1}$$

We will focus on adversary A to have an oracle access to $(f^\pm, \mathcal{E}_K, \mathcal{D}_K)$ and also that only makes full-block queries.

For this proof we need the same setting as in the privacy proof, about the guess and hit events, but here extended with new \mathcal{D}-related collision events $\mathcal{D}_{\text{guess}}$ and \mathcal{D}_{hit}. The state values are the same as in 3.6 with a δ appended to the subscript, where $\delta \in \{\mathcal{E}, \mathcal{D}\}$.

We observe that:
3.1 Security proof of \(\pi \)-Cipher

\[
\Pr(\mathcal{A} f^\pm, EK, DK \text{forges}) \leq \Pr(\mathcal{A} f^\pm, EK, DK \text{forges}|\text{event}) + \\
\Pr(\mathcal{A} f^\pm, EK, DK \text{sets event}) \tag{3.15}
\]

A bound on the probability that \(\mathcal{A} \) forges when event does not happen is the same with the case where \(\mathcal{A} \) can guess the tag \(T_j \) for some decryption query \(j \). The final tag is calculated as \(f(s^D_{AD,j,1,1}) \oplus \ldots \oplus f(s^D_{AD,j,a,1}) \oplus f(s^C_{SMN,j,1,1}) \oplus f(s^C_{SMN,j,m,1}) \) Because the query is new, and event guess or hit doesn’t happen before, at least one of these states is a new too, so \(f \)'s output is uniformly distributed, and the final tag gets new value. So, the \(j \)-th forgery attempt is successful with probability at most \(1/2^c \). Summing over all decryption queries \(q_D \) we get:

\[
\Pr(\mathcal{A} f^\pm, EK, DK \text{forges}|\text{event}) \leq \frac{q_p}{2^c}
\]

Next we need to explain what is the bound on the probability when adversary sets event. Here, \(\text{event} = \text{guess} \lor \text{hit} \lor D\text{guess} \lor D\text{hit} \) and

\[
\Pr(\mathcal{A} f^\pm, EK, DK \text{sets event}) \leq \Pr(\text{guess} \lor \text{hit} \lor D\text{guess} \lor D\text{hit}) \\
\leq \Pr(\text{guess} \lor \text{hit} \lor D\text{guess} \lor D\text{hit}|-(\text{key} \lor \text{multi}) \lor \Pr(\text{key} \lor \text{multi}) \tag{3.16}
\]

Event \(D\text{guess} \). Note that the adversary may freely choose the rate part in decryption queries and primitive queries (the ciphertext represents the rate part). \(D\text{guess} \) sets bad as soon as there is a primitive state and a decryption state whose capacity parts are equal.

\(D\text{guess}(i; j, k) \equiv x_i = s_{\delta,j,k}, \) where \(\delta = D \) which means that an adversary \(\mathcal{A} \) is not able to ask a query \(E \). This happens with probability at most \(q_p \sigma_D/2^k \).

\[
\Pr(D\text{guess}|-(\text{key} \lor \text{multi})) \leq q_p \sigma_D/2^k.
\]

Event \(D\text{hit} \). In this case an adversary has an ability to reuse nonces in the decryption queries. Any decryption state can hit the initial one (where just the key is unknown) with probability at most \(\sigma_D/2^k \). We have several subcases:

1. \((N; AD, C) = (N_{\delta,j}; AD_{\delta,j}, C_{\delta,j}) \) but \(T \neq T_{\delta,j} \). This case is with probability 0.
2. \((N; AD) = (N_{δ,j}; AD_{δ,j})\) but \(C \neq C_{δ,j}\). Let we say that \(C_{δ,j}\) shares the longest common prefix \(l\) with \(C\) and \(l < m\). In this case \(s_{j,l,0}^C = s_{δ,j,l,0}^C\) and \(s_{j,l,1}^C = C_l||[s_{δ,j,l,1}^C]_c \neq s_{δ,j,l,1}^C\), thus \(s_{j,l,1}^C\) is a new state and new input to \(f\). It can hit a certain older state with probability \(1/2^c\). In total, the \(j\)-th decryption query sets event \(D_{hit}\) with probability at most:

\[
\Pr(D_{hit}|-(key \lor multi)) \leq \sum_{j=1}^{qD} \frac{\sigma_D \sigma_{D,j}}{2^c} + \left(\sigma_D \sigma_{D,j}/2^c\right)^2 + \frac{qD a}{2^r} + \frac{\sigma_D}{2^k}
\]

If ciphertexts \(C \neq C_{δ,j}\) are different in all their blocks, then \(s_{j,0}^{SMN} = s_{δ,j,0}^{SMN}\) and \(s_{j,1}^{SMN} = C_0||[s_{δ,j,1}^{SMN}]_c \neq s_{δ,j,1}^{SMN}\). This means that the state is fresh and can be hit with some older state with probability \(1/2^c\).

Here we have one subcase, or if \(SMN\) is the same. This means that \(C_0 = C_{δ,j,0}\) and CIS for the message phase is the same \(f(s_{j,1}^{SMN}) = f(s_{δ,j,1}^{SMN})\). So the reasoning carries over the case where the rest of the ciphertexts is different or they have longest common prefix.

3. \(N = N_{δ,j}\) but \(AD \neq AD_{δ,j}\). The analysis is the same as in the ciphertext case, except the case where inner collision can be done between the state where \(CIS\) is updated and states from the associated data \((a/2^r)\). In the rest the reasoning carries over for all new future states.

4. \(N \neq N_{δ,j}\). The nonce is new so all future states in this query are new. Simplification can be applied here.

Summing over all queries we get:

\[
\Pr(event) \leq q_{p} + \frac{\sigma_D + \sigma_{D,j}}{2^k} + \frac{(\sigma_{D,j} - q_{p})^2}{2^{k+1}} + \frac{q_p a}{2^r} + \frac{q_p a + qD a}{2^r} + \frac{2q_p \sigma_D}{2^k} + \sqrt{\frac{8\epsilon \sigma_x q_{p}}{2^k} + \frac{q_p \sigma_D}{2^c} + \frac{\sigma_D \sigma_x + \sigma_{D,j}^2/2}{2^c}}
\] (3.17)

At the end, we have the final bounds for integrity of \(\pi\)-Cipher:
3.2 Bit diffusion analysis

We assume that \(\frac{q_r a + q_D a}{2^r} + \frac{q_r \sigma_a}{2^{b+1}} + \sqrt{\frac{8c_\sigma q_p}{2^b}} + \frac{q_r \sigma_D}{2^c} + \frac{\sigma_D^2/2}{2^c} \) and get the following:

\[
Adv_{\Pi}^{Auth}(\mathcal{A}) \leq \frac{(q_r + \sigma_a + \sigma_D)^2}{2^b} + \frac{q_D^2}{2^r} + \frac{q_r + \sigma_a + \sigma_D}{2^b} + \frac{(\sigma_a - q_r)^2}{2^{b+1}} + \frac{q_r r}{2^c} + \frac{q_r a + q_D a}{2^r} + \sqrt{\frac{8c_\sigma q_p}{2^b}} + \frac{q_r \sigma_D}{2^c} + \frac{\sigma_D^2/2}{2^c}
\]

(3.18)

3.2 Bit diffusion analysis

We give a bit diffusion analysis for the \(\ast \) operation and for one round of the \(\pi \) function of \(\pi_{16}\text{-Cipher}, \pi_{32}\text{-Cipher and } \pi_{64}\text{-Cipher.} \)

In our analysis, we have used two experimental settings:

1. Examining the propagation of a one bit difference in a 10000 randomly generated \(X \) and \(Y \) (inputs) of the \(\ast \) operation;

2. Examining the propagation of a one bit difference in a 1000 randomly generated Internal states \(IS \) for one round of the \(\pi \) function.

We performed several experiments for different word sizes (\(\omega = 16, 32, 64 \)).

In the experimental setting under (1) we generated 10000 random values for \(X \) and \(Y \). First, we measured what is the Hamming distance between outputs \(Z \) and \(Z' \) (\(Z = X \ast Y \) and \(Z' = X' \ast Y \)), where 1 bit is changed in the input \(X \) (\(HammingDist(X, X') = 1 \)). After that we measured the Hamming distance between outputs \(Z \) and \(Z' \) of the \(\ast \) operation (\(Z = X \ast Y \) and \(Z' = X \ast Y' \)) where 1 bit is changed in \(Y \) (\(HammingDist(Y, Y') = 1 \)). The results for \(\omega = 16, 32, 64 \) are shown in Figure 3.1, Figure 3.2 and Figure 3.3.

In the experimental setting under (2) we generated 1000 random values for the Internal State \(IS \) and used just one round of the \(\pi \) function. Here we measure the Hamming distance between the outputs (\(\pi(IS) \) and \(\pi(IS') \)), where one bit is changed in the \(IS \).
3.2 Bit diffusion analysis

Figure 3.1: Avalanche effect of the $*$ operation for $\omega = 16$

Figure 3.2: Avalanche effect of the $*$ operation for $\omega = 32$

Figure 3.3: Avalanche effect of the $*$ operation for $\omega = 64$
(HammingDistance(IS, IS') = 1). The results for $\omega = 16, 32, 64$ are shown in Figure 3.4, Figure 3.5 and Figure 3.6.

3.3 Distinguisher for one round of \(\pi_{16}\text{-Cipher096}\)

We describe a distinguisher attack for one round of \(\pi_{16}\text{-Cipher096}\).

For $\omega = 16$ the size of the part J_2 in Figure 3.7 is 64 bits. Thus, by trying all 2^{64} values for J_2 (the graphical representation is in Figure 3.8) we can obtain in a unique way a list $\mathcal{L}_1 = \{(I_{1i}, I_{2i}) \mid 0 \leq i < 2^{64}\}$ of 2^{64} different values for the pairs (I_{1i}, I_{2i}) (the graphical representation is in Figure 3.9). We build a similar list $\mathcal{L}_2 = \{(I'_{1i}, I'_{2i}) \mid 0 \leq i < 2^{64}\}$ for the next encrypted block. Knowing that the encryption for the next block is by injecting a counter that was incremented by 1 from the previous counter value, and that it was injected in the position of I_1, while the value of I_2 was the same, we build a matching list $\mathcal{L}_3 = \{(I_{1i}, I'_{1i}, I_{2i}, I'_{2i}) \mid 0 \leq i < 2^{64}\}$ where $I'_{1i} - I_{1i} = 1$. With probability 1 there will be a pair of values where $I_{2i} = I'_{2i}$, while if the values of J_1 and J_3 were from an ideal random source, the probability that there will be a pair where $I_{2i} = I'_{2i}$ is very low (much less than 2^{-32}). In total, the complexity of the attack is 2^{65} computations of the
3.3 Distinguisher for one round of π_{16}-Cipher096

![Figure 3.5: Avalanche effect of one round of the π function where $\omega = 32$ (Min = 226.063, Avg = 256.765, Max = 251.472)](image1)

![Figure 3.6: Avalanche effect of one round of the π function where $\omega = 64$ (Min = 400.88, Avg = 485.646, Max = 515.76)](image2)
operation *, and the space is $2^{65} \times 16 = 2^{69}$ bytes.

For more than one round, or for bigger values of ω, this distinguishing attack is more complex than the claimed security of the cipher.

Figure 3.7: One round of π16-Cipher

Figure 3.8: For J_2 we try all possible 2^{64} values.

Figure 3.9: The blue squares are either guessed ones (that is J_2) or obtained in a unique way from the definition of the operation *.
Chapter 4

Features

4.1 Main Features

In this section we discuss the features of π-Cipher loosely following the structure of the features section http://competitions.cr.yp.to/features.html on the CAESAR web site.

Cipher-structure (Encrypt than MAC). First we want to point out that it is relatively straightforward to show that the π-Cipher is an Encrypt-then-MAC authenticated cipher. Let us recall the definition for the Encrypt-then-MAC authenticated cipher: We say that the authenticated cipher is Encrypt-then-MAC if a message M is encrypted under a secret key K_1 and then the tag T is calculated with another secret key K_2 as $MAC(K_2, C)$. The pair (C, T) is the output of the authenticated encryption procedure.

If we describe the e-triplex component used in π-Cipher in a mathematical form we have the following. First the message M is encrypted producing the ciphertext C as

$$IS \leftarrow \pi(CIS_{rate} \oplus counter ||| CIS_{capacity}),$$
$$C \leftarrow M \oplus IS_{rate}.$$

Then, the tag T is calculated as

$$t \leftarrow \pi(C ||| IS_{capacity})_{rate}.$$

Here, the value of $CIS_{rate} \oplus counter ||| CIS_{capacity}$ has the role of K_1 in the definition of Encrypt-then-MAC, and the value of $C ||| IS_{capacity}$ has the role of the pair (K_2, C).
4.1 Main Features

in the $\text{MAC}(K_2, C)$ part of the definition of Encrypt-then-MAC.

Associated Data and NONCE reuse. If we encrypt two different plaintexts M_1 and M_2 with the same secret key K, associated data AD and nonce $NONCE = (PMN, SMN)$, then neither the confidentiality nor the integrity of the plaintexts are preserved in the π–Cipher. However, as one measure to reduce the risks of a complete reuse of the $NONCE$ we have adopted the strategy of a composite $NONCE = (PMN, SMN)$. If either PMN or SMN are different, then both the confidentiality and integrity of plaintexts are preserved.

Plaintext corruption, associated-data corruption, message-number corruption, ciphertext corruption. We posit that the π-Cipher can straightforwardly be proven INT-CTXT secure under the assumption that the permutation π is an ideal random permutation without any structural distinguishers, based on the security proof in Section 3.1.

Ciphertext prediction. The best distinguishing attack that we know for the π-Cipher is for the version π_{16}-Cipher096 with just one round and is described in Section 3.3. The complexity of the attack is 2^{65} computations of the operation \ast, and the space is $2^{65} \times 16 = 2^{69}$ bytes.

Replay and reordering. For the π-Cipher, the standard defense against both replay and reordering is for the sender to use strictly increasing public message numbers $PMNs$, and for the receiver to refuse any message whose message number is no larger than the largest number of any verified message. This requires both the sender and receiver to keep state.

Sabotage. The π-Cipher puts the encryption of the SMN value as the first block of the ciphertext C. Thus, in protocols that use the π-Cipher, the receiver can make an early reject of invalid messages by decrypting the first block (containing the SMN) and comparing it to its expected value. Only if this check passes the receiver continues with the rest of the decryption and tag computation. Note however, that this requires the protocol to not return error messages to the sender, in order to avoid timing attacks. AES-GCM does not have this property.
Plaintext espionage. Since the attacker’s goal here is to figure out the user’s secret message, the only feasible attack can happen when the size of the secret message is small by building a table of encrypted secret messages. To defend against this attack the π-Cipher requires the nonce pair $NONCE = (PMN, SMN)$ to have a unique value for every encryption.

Message-number espionage. In the π-Cipher there is a dedicated phase for encrypting the secret message number SMN, and figuring out the value of SMN is equivalent to breaking the whole cipher which is infeasible under the assumptions that the permutation $\pi()$ is random.

General input scheduling. The π-Cipher can offer two ways for reducing the latency: (1) If the key K and the public message number PMN are known in advance and used repeatedly, then it is possible to precompute phase 1. and store the resulting Common Internal State (CIS) for subsequent applications of the cipher. (2) If the key K, the public message number PMN and the associated data AD are known in advance and used repeatedly, then it is possible to precompute both phase 1. and phase 2. for subsequent uses. In both cases, in order to preserve the confidentiality and the integrity of the plaintext, for every encryption the secret message numbers SMN’s must be unique.

Software performance. For efficient software implementations, we propose to use the $\pi64$-Cipher. On modern Intel CPUs (Sandy Bridge and Haswell) the initial and slightly optimized implementation (but non-SIMD) achieves the speeds from 6 cpb up to 12 cpb.

Lightweight hardware performance. For a lightweight hardware implementation we propose to use $\pi16$-Cipher096. Our implementation of the π-function on FPGA Xilinx Virtex7 needs 266 slices achieving a throughput of 4.34 Gpbs at 347 MHz. Also the message processor is built and it costs 1114 slices working at 250 MHz.
4.2 Extra Features

4.2.1 Tag second preimage resistance - resistance against finding second preimage for an authentication tag when the key is known (insider attack)

π-Cipher offers some level of tag second-preimage resistance. We say some level, since the computational efforts for finding a second-preimage for a given pair $(message, tag)$ are not the same as for finding second-preimages for hash functions. And if the π-Cipher is used for authenticated encryption of messages with arbitrary length (in the framework of the maximally allowed size of the messages which is up to 2^{64} bytes), as it was shown by Leurent in [12] the second-preimages can be computed with complexities from 2^{22} using messages that are long 2^{11} blocks up to complexity 2^{45} using messages that are long 2^{22} blocks. Laurent’s analysis on π-Cipher v1 was based on Wagner’s generalized birthday attack [14] which complexity can be described as follows. The complexity of finding a preimage message $M_1|\ldots|M_K$ of K blocks, where K is smaller than some predefined big number, is:

$$\min_k O(K \cdot 2^{1+\frac{k}{\lg K}})$$ \hspace{1cm} (4.1)

If the length of the messages is not restricted, then the minimum in equation (4.1) is achieved for messages of $K = 2^{\sqrt{K} - 1}$ blocks.

However, there are situations when we need to encrypt relatively short messages. For example, if we use the π-Cipher in IPSec or TLS with the most common Internet packet size of 1500 bytes, then for π64-Cipher128 or π64-Cipher256 the encrypted messages will have “just” 24 packets. In that case the Wagner’s generalized birthday attack in order to find a second-preimage for a given tag will need 2^{108} e-triplex invocations and a space of 2^{113} bytes. We note that by choosing different values for the tweakable parameter N, we can achieve different levels of tag second-preimage resistance.

4.2.2 A wide block tweakable feature of π-Cipher

π-Cipher is designed to be tweakable for different word sizes, different security levels and different block sizes. The goal of π-Cipher is to achieve both high performance and strong security.
Authenticated encryption of stored data has its own specifics and differs from authenticated encryption of data in transit. The most notable difference is that an authenticated encryption algorithm used for data storage has to support independent encryption and decryption of portions of data. Those portions of data are typically represented as disk sectors. Old hard disk drives (HDDs) had sectors of 512 bytes but the hard disk producers moved to a 4096 (4K) byte sector size with the Advanced Format [10]. The new AF HDD storage devices read data from or write data to 4K-byte (4,096 bytes) physical sectors on the HDD media.

In contrast to the hard disk, a Solid State Drive (SSD) consists of semiconductor memory building blocks, and it contains no mechanical parts. The smallest unit of an SSD is a page, and it can be of size as small as 2KB, 4KB, 8KB, 16KB etc. It is not possible to read less than one page at once [8]. Several pages on the SSD are summarized to a block. For example, the Samsung SSD 840 EVO has blocks of size 2048KB, and each block contains 256 pages of 8KB each.

| Table 4.1: Wide block characteristics of \(\pi_{64}\)-Cipher256 |
|---------------------------------|-----------------|-----------------|----------------|-----------------|----------------|
| **wide block of 512B** | 256 | 512 | 0 | 512 | 32 |
| **wide block of 2KB** | 256 | 512 | 0 | 2048 | 128 |
| **wide block of 4KB** | 256 | 512 | 0 | 4096 | 256 |
| **wide block of 8KB** | 256 | 512 | 0 | 8192 | 512 |
| **wide block of 16KB** | 256 | 512 | 0 | 16384 | 1024 |

Using the encryption algorithm that can encrypt one sector (one page) as one block of message will be an advantage. From this perspective, we can use very efficiently \(\pi_{64}\)-Cipher256 by tuning the parameter \(N\) to define arbitrary big block sizes that match the disk sector (page) sizes. For example, if \(N = 256\) (instead of the recommended value \(N = 4\)) we can encrypt a whole sector of 4KB as one block. The sector number can be used as a part of the counter that is used in the \(\pi\)-Cipher when processing each block, the authenticated tag for that block can be stored in the data structure associated with that disk sector, and all those disk sectors can be processed independently and in parallel.

For encrypting standard old hard disk drives (HDDs) where the sector size is 512
bytes the rate of the cipher should be 512B and parameter should be \(N = 32 \) to process one sector at once.

Having all this in mind, we recommend 5 instances of \(\pi \)-64-Cipher256 with parameters \(N \) that fits the sizes of older and modern disk sectors. The recommended variants are presented in Table 4.1. Note that the number of rounds here is 2.

4.2.3 How to securely do incremental encryption (even with nonce misuse)

According to the paper "General Overview of the First-Round CAESAR Candidates for Authenticated Encryption" [1] by Abed, Forler and Lucks, for the "Incremental Authenticated Encryption" they took the following (in our opinion correct) criteria:

"Note that some schemes may provide this property under the requirement of reusing the nonce. We consider nonce misuse to be an erroneous usage which should not be encouraged to obtain a nice feature. Hence, we denote scheme to provide incremental authenticated encryption only if the nonce is used only once and never is repeated."

By this criteria, they correctly categorized \(\pi \)-Cipher as non-incremental cipher.

In this note we explain how \(\pi \)-Cipher can be used as incremental authenticated cipher, that complies with the criteria of Abed, Forler and Lucks for incremental authenticated encryption. It comes with a costs of an additional data overhead of 64 bits per encrypted block. That data overhead serves as an update counter \(\text{UpdCtr} \), that records the history of updates for every data block.

The default block sizes for \(\pi \)-Cipher are 128, 256 or 512 bits. Adding a data overhead of 64 bits for every data block would be an enormous and unacceptable overhead of 50%, 25% or 12.5%. Luckily, \(\pi \)-Cipher is designed to be tweakable for different block sizes. We have already described variants of \(\pi \)-64-Cipher256 with block sizes of 512B, 2KB, 4KB, 8KB and 16KB. For those sizes the corresponding percentage of the overhead of 64 bits is: 1.5%, 0.39%, 0.19%, 0.09% and 0.04%. For even bigger block sizes, this overhead can become negligible.

Note that in case that the user do not want to keep in memory the precomputed values for \(CIS \) and \(ctr + a + 1 \) then he/she has to execute again the Initialization phase
Figure 4.1: Processing the message M with m blocks in parallel. Here the 64-bit update counters $UpdCtr_i$ are injected into the sponge state.
Algorithm 1 - Incremental tag update operation

Input. The common internal state CIS, $ctr + a + 1$, the block index i, the old block M_i, the update counter for that block $UpdCtr_i$, the new block M'_i and the old tag value T.

Output. A new ciphertext block C_i and a new tag T.

1. For the old block M_i, calculate:

 $$ IS := \pi(CIS_{rate} \oplus ((ctr + a + 1) \parallel UpdCtr_i) \parallel CIS_{capacity}); $$

 $$ C_i := M_i \oplus IS_{rate}; $$

 $$ t_i := \pi(C_i \parallel IS_{capacity}_{rate}); $$

2. Increase the value of the update counter

 $$ UpdCtr_i \leftarrow UpdCtr_i + 1 $$

3. For the new block M'_i, calculate:

 $$ IS := \pi(CIS_{rate} \oplus ((ctr + a + 1) \parallel UpdCtr_i) \parallel CIS_{capacity}); $$

 $$ C'_i := M'_i \oplus IS_{rate}; $$

 $$ t'_i := \pi(C'_i \parallel IS_{capacity}_{rate}); $$

4. Combine T, t_i and t'_i via a combining group operation \boxdot_d to get the final authentication tag value $T'' = T \boxdot_d t_i \boxdot_d t'_i$;

5. Replace: $C_i \leftarrow C'_i$ and $T \leftarrow T''$;

6. Output C_i and T.

Table 4.2: Incremental authentication encryption update with π-Cipher.

with the secret key K and the nonce part PMN, then will have to process the associated data and finally to encrypt again SMN.

As it is shown in Step 1 and Step 3, the incremental authentication encryption mode works in such a way that the 64-bit update counters $UpdCtr_i$ are injected in the permutation state concatenated to the block counters. That means that the vectors $(PMN, SMN, ctr, UpdCtr_i)$ form a unique nonce, for every block M_i, thus there is no nonce repetition and misuse. A graphical presentation of the encryption phase in this incremental authenticated encryption mode of π-Cipher is given in Figure 4.1.

4.2.4 π-Cipher is STREAM OAE2+

Recently, Rogaway et al., [9] have introduced the definition of Online Authenticated-Encryption 2 and its STREAM OAE2 sub-variant. Their definition as they say *effectively does capture best-possible security for a user's choice of plaintext segmentation and ciphertext expansion*. They also mention that the sponge duplex construction in [5] resembles OAE2.

If we have in mind that π-Cipher is based on the duplex construction of [5], with the additional cryptographic mechanisms that strengthen its robustness such as the features:
• tag second preimage resistance

• wide block tweakability

• incrementability

• use of SMN that guarantees confidentiality and integrity even when the K, AD and PMN are reused.

it is clear why we consider π-Cipher has STREAM OAE2+ design.
Chapter 5

Design rationale

Disclaimer: "The designer/designers have not hidden any weaknesses in this cipher."

5.1 Why parallelism, incrementality and tag second-preimage resistance?

While AES-GCM can be parallelized it is not a tag second-preimage resistant. In our presentation at DIAC 2013 [6] we located several reasons why MACs should retain some hash properties when the key is known. We argued that since the Robustness is one of the main goals of the future AEAD standard, tag second-preimage resistance should be one of the features that an AEAD cipher should posses. We also gave two realistic scenarios ("Secure audit logs" and Multi-cast authentication) when the lack of tag second-preimage resistance in authenticated encryption can be exploited.

While the proposed sponge constructions of authenticated encryption offer tag second-preimage resistance, they lack some of the properties that are also useful and desired (such as parallelizability and incrementality). As a result of this line of reasoning, we designed a cipher for authenticated encryption that is parallel, incremental and offers a certain level of tag second-preimage resistance.
5.2 Why constants in π–Cipher and how to choose them

In order to avoid the existence of some trivial fixed points in the permutation function π, we decided to use constants in the affine bijective transformations \widehat{A}_1 and \widehat{A}_3 from μ and ν permutations. The reason why we choose these constants is that they are represented as a sequence of equal distribution of 0s and 1s. Having these constants in \widehat{A}_1 and \widehat{A}_3 we are not aware of any point X such that

$$\pi(X) = X.$$

The size and value of the constants depend on the length of the words in the π–Cipher. First we generate the set $Constants$ of all possible 8-bit (1 byte) candidates with equal distribution of 0s and 1s in their binary representation. The total number of elements in this set is 70, and is given by:

$$Constants = \{0xF0, 0xE8, 0xE4, 0xE2, 0xD8, 0xD4, 0xD2, 0xD1, 0xCC, 0xCA, 0xC9, 0xC6, 0xC5, 0xC3, 0xB8, 0xB4, 0xB2, 0xB1, 0xAC, 0xAA, 0xA9, 0xA6, 0xA5, 0xA3, 0x9C, 0x9A, 0x99, 0x96, 0x95, 0x93, 0x8E, 0x8D, 0x8B, 0x87, 0x78, 0x74, 0x72, 0x71, 0x6C, 0x6A, 0x69, 0x66, 0x65, 0x63, 0x5C, 0x5A, 0x59, 0x56, 0x55, 0x53, 0x4E, 0x4D, 0x4B, 0x47, 0x3C, 0x3A, 0x39, 0x36, 0x35, 0x33, 0x2E, 0x2D, 0x2B, 0x27, 0x1E, 0x1D, 0x1B, 0x17, 0x0F\}$$

The constants used in the $\pi\omega$–Ciphers with different word sizes consist of a concatenation of a consecutive 8-bit elements from the set $Constants$.

π_{16}–Cipher uses eight 16-bit constants for the $*$ operation and eight 4-tuples of 16-bit constants for the rounds. We start from the first element of the set $0xF0$ and take 16 successive byte values up to the value $0xB8$ and form the constants for the $*$ operation. After that, we take every eight successive byte values to form one round constant. We repeat this procedure 6 times and generate the constants C_1, C_2, \ldots, C_6 for the rounds.

Since π_{32}–Cipher uses eight 32-bit constants for the $*$ operation and eight 4-tuples of 32-bit constants for the rounds, we take 32 successive byte values starting from the
first one 0xF0 and form the constants for the $*$ operation. The next 128 consecutive byte values are used for generating constants for the rounds. Because we need 128 bytes for the round constants of π_{32}-Cipher and have 70 elements in the set, for the 71st byte we take the value of the first element in the set Constants again.

π_{64}-Cipher uses eight 64-bit constants for the $*$ operation. They are taken as 64 successive byte values from the set, starting from the first one 0xF0. Since π_{64}-Cipher uses 4-tuples of 8 bytes round constants, we take them successively starting from the value 0x27 in the set Constants.

The values of both constants (for the $*$ operation and for rounds) for different π-Ciphers are given in Section 1.3.
Chapter 6

Intellectual property

We, the designers of the \(\pi\)-Cipher hereby declare that, to the best of our knowledge, the design of the algorithm that we have submitted for the CAESAR competition, is not covered by any patents. We also hereby declare that we intend never to cover the design of the \(\pi\)-Cipher by any patent.

If any of this information changes, the submitter/submitters will promptly (and within at most one month) announce these changes on the crypto-competitions mailing list.

\(\pi\)-Cipher stands for the concept of ”open authorship”. It is very similar concept to the concept of open source projects, but we introduce it in the area of the intellectual efforts of crypto designs. In essence, it gives opportunity to all people that contribute anyhow in the development of \(\pi\)-Cipher (for example if a tweak is introduced due to an analysis of the cipher, or if a new mode of operation is proposed, or new implementations are produced), then all those contributors have an opportunity (if they want) to ask to be added to the list of designers for new versions or variants of \(\pi\)-Cipher.

The members of the \(\pi\)-Cipher v2.0 and further versions will be listed in chronological order as they joined the list of designers.
Chapter 7

Consent

The submitter/submitters hereby consent to all decisions of the CAESAR selection committee regarding the selection or non-selection of this submission as a second-round candidate, a third-round candidate, a finalist, a member of the final portfolio, or any other designation provided by the committee. The submitter/submitters understand that the committee will not comment on the algorithms, except that for each selected algorithm the committee will simply cite the previously published analyses that led to the selection of the algorithm. The submitter/submitters understand that the selection of some algorithms is not a negative comment regarding other algorithms, and that an excellent algorithm might fail to be selected simply because not enough analysis was available at the time of the committee decision. The submitter/submitters acknowledge that the committee decisions reflect the collective expert judgments of the committee members and are not subject to appeal. The submitter/submitters understand that if they disagree with published analyses then they are expected to promptly and publicly respond to those analyses, not to wait for subsequent committee decisions. The submitter/submitters understand that this statement is required as a condition of consideration of this submission by the CAESAR selection committee.
Acknowledgments

We would like to thank Gaëtan Leurent and Thomas Fuhr for their detailed observation on the \(\pi\)-Cipher, pointing out the problem with the padding function in v1.0, and giving us a note for removing a bug in the reference C code. Also we would like to thank Bart Mennink for his valuable and excellent advices in the process of proving the security of \(\pi\)-Cipher.

Much of the work on this cipher was done while Hristina Mihajloska was visiting Danilo Gligoroski’s group at Department of Telematics, NTNU. This visit was supported from ICT COST Action - IC1306 Cryptography for Secure Digital Interaction as a Short Term Scientific Mission (STSM).
References

